找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantization of Singular Symplectic Quotients; N. P. Landsman,M. Pflaum,M. Schlichenmaier Conference proceedings 2001 Springer Basel AG 20

[復(fù)制鏈接]
樓主: Jaundice
21#
發(fā)表于 2025-3-25 05:27:38 | 只看該作者
Poisson sigma models and symplectic groupoids,tural groupoid structure. If it is a manifold then it is a symplectic groupoid for the given Poisson manifold. We study various families of examples. In particular, a global symplectic groupoid for a general class of two-dimensional Poisson domains is constructed.
22#
發(fā)表于 2025-3-25 07:46:25 | 只看該作者
23#
發(fā)表于 2025-3-25 13:31:34 | 只看該作者
24#
發(fā)表于 2025-3-25 19:01:09 | 只看該作者
25#
發(fā)表于 2025-3-25 23:37:40 | 只看該作者
26#
發(fā)表于 2025-3-26 02:23:11 | 只看該作者
27#
發(fā)表于 2025-3-26 04:57:03 | 只看該作者
28#
發(fā)表于 2025-3-26 09:12:50 | 只看該作者
29#
發(fā)表于 2025-3-26 14:03:00 | 只看該作者
Smooth structures on stratified spaces,ve rise to natural examples for stratified spaces with a smooth structure. Moreover, it is shown how smooth structures allow for the definition of geometric concepts on stratified spaces like tangent spaces, vector fields and Poisson bivectors. Finally, it is explained what to understand by the quantization of a symplectic stratified space.
30#
發(fā)表于 2025-3-26 20:10:03 | 只看該作者
Moulay-Tahar Benameur,Victor Nistort einer Steuer-GuV an die Finanzverwaltung zu übermitteln sind, auch wenn § 5b Abs. 1 Satz 3 EStG nur von einer Steuerbilanz spricht. Des Weiteren wird es seitens der Finanzverwaltung nicht beanstandet, wenn die Handelsbilanz den notwendigen Mindestumfang der zu übermittelnden Daten nicht erfüllt un
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 01:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
怀集县| 姚安县| 丁青县| 营口市| 上林县| 万安县| 兰考县| 无棣县| 汾西县| 湖北省| 盐山县| 安顺市| 扬中市| 六枝特区| 丘北县| 遂宁市| 六安市| 泽普县| 宾阳县| 定结县| 邢台县| 武陟县| 永登县| 徐州市| 竹山县| 红原县| 陈巴尔虎旗| 罗定市| 深水埗区| 吉安市| 邵阳县| 图木舒克市| 通城县| 政和县| 合川市| 黔南| 克什克腾旗| 西丰县| 沾化县| 嘉定区| 偃师市|