找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantization of Singular Symplectic Quotients; N. P. Landsman,M. Pflaum,M. Schlichenmaier Conference proceedings 2001 Springer Basel AG 20

[復(fù)制鏈接]
樓主: Jaundice
11#
發(fā)表于 2025-3-23 10:08:28 | 只看該作者
12#
發(fā)表于 2025-3-23 14:49:23 | 只看該作者
13#
發(fā)表于 2025-3-23 19:30:50 | 只看該作者
Quantized reduction as a tensor product,es of dual pairs, with symplectic groupoids as units. Morita equivalence of Poisson manifolds amounts to isomorphism of objects in this category..This description paves the way for the quantization of the classical reduction procedure, which is based on the formal analogy between dual pairs of Poiss
14#
發(fā)表于 2025-3-24 01:11:19 | 只看該作者
15#
發(fā)表于 2025-3-24 03:17:35 | 只看該作者
Smooth structures on stratified spaces, one needs an appropriate functional structure on these spaces. But unlike for manifolds such a functional structure on a stratified space is in general not intrinsically given. In this article we explain the basic notions of the theory of stratified spaces and define an appropriate concept for a so
16#
發(fā)表于 2025-3-24 07:11:23 | 只看該作者
17#
發(fā)表于 2025-3-24 10:45:15 | 只看該作者
18#
發(fā)表于 2025-3-24 15:20:44 | 只看該作者
Combinatorial quantization of Euclidean gravity in three dimensions,surface, where . is a typically non-compact Lie group which depends on the signature of space-time and the cosmological constant. For Euclidean signature and vanishing cosmological constant, . is the three-dimensional Euclidean group. For this case the Poisson structure of the moduli space is given
19#
發(fā)表于 2025-3-24 20:45:48 | 只看該作者
20#
發(fā)表于 2025-3-25 00:07:32 | 只看該作者
Homology of complete symbols and noncommutative geometry,(.) 0 ? .* (.) × (0, ∞), the dual of.with the zero section removed. We use then these results to compute the Hochschild and cyclic homologies of the algebras of complete symbols associated with manifolds with corners, when the corresponding Lie algebroid is rationally isomorphic to the tangent bundle.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洛宁县| 浑源县| 松江区| 灵台县| 江津市| 墨竹工卡县| 张掖市| 古丈县| 离岛区| 慈溪市| 农安县| 定兴县| 白朗县| 道孚县| 阿克陶县| 临夏市| 大厂| 广丰县| 万荣县| 陕西省| 右玉县| 曲沃县| 石门县| 辽宁省| 和田县| 穆棱市| 乐至县| 延安市| 宁安市| 通许县| 大庆市| 宾川县| 怀远县| 东乡族自治县| 美姑县| 大名县| 定安县| 吉木萨尔县| 临泉县| 秭归县| 西昌市|