找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantization and Infinite-Dimensional Systems; J-P. Antoine,S. Twareque Ali,A. Odzijewicz Book 1994 Plenum Press, New York 1994 Potential.

[復(fù)制鏈接]
樓主: 婉言
11#
發(fā)表于 2025-3-23 10:35:40 | 只看該作者
12#
發(fā)表于 2025-3-23 17:11:36 | 只看該作者
13#
發(fā)表于 2025-3-23 19:33:15 | 只看該作者
Quantum Frames, Quantization and Dequantizationl, taking as our working example the case of the Poincaré group in 1+1 space-time dimensions. We also compare this approach to the familiar geometric quantization method, which turns out to be less versatile than the new one.
14#
發(fā)表于 2025-3-24 00:16:07 | 只看該作者
15#
發(fā)表于 2025-3-24 04:34:45 | 只看該作者
d theory, geometric quantization and symplectic geometry, coherent states methods, holomorphic representation theory, Poisson structures, non-commutative geometry, supersymmetry and quantum groups. The editors have the pleasant task of first thanking all the local organizers, in particular Dr. K. Gilewicz, fo978-1-4615-2564-6
16#
發(fā)表于 2025-3-24 07:55:40 | 只看該作者
17#
發(fā)表于 2025-3-24 11:01:57 | 只看該作者
18#
發(fā)表于 2025-3-24 16:58:07 | 只看該作者
Geometric Quantization of String Theory Using Twistor ApproachThe geometric quantization scheme for the string theory is formulated in terms of a symplectic twistor bundle over the phase manifold.
19#
發(fā)表于 2025-3-24 22:06:35 | 只看該作者
20#
發(fā)表于 2025-3-25 01:11:35 | 只看該作者
On the Spectrum of the Geodesic Flow on SpheresWe propose a uniform method for derivation of the energy spectrum of the geodesic flow of the sphere .. (and hence of the Kepler problem) for all dimensions . ≥ 1. The idea is to use Marsden-Weinstein reduction in the context of equivariant cohomology. The one-dimensional case is thus covered by the general geometric quantization scheme.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 03:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
卢氏县| 镇安县| 金秀| 毕节市| 盐津县| 崇州市| 江安县| 瑞丽市| 井冈山市| 永康市| 巴马| 夏津县| 三原县| 金阳县| 娄底市| 石景山区| 石首市| 陵川县| 涡阳县| 玉龙| 新巴尔虎右旗| 惠水县| 顺平县| 贵港市| 军事| 西乌珠穆沁旗| 金堂县| 营山县| 道真| 旅游| 昌江| 西乌| 甘谷县| 保定市| 顺昌县| 卫辉市| 永兴县| 古丈县| 绥宁县| 普定县| 株洲县|