找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantization and Infinite-Dimensional Systems; J-P. Antoine,S. Twareque Ali,A. Odzijewicz Book 1994 Plenum Press, New York 1994 Potential.

[復(fù)制鏈接]
樓主: 婉言
11#
發(fā)表于 2025-3-23 10:35:40 | 只看該作者
12#
發(fā)表于 2025-3-23 17:11:36 | 只看該作者
13#
發(fā)表于 2025-3-23 19:33:15 | 只看該作者
Quantum Frames, Quantization and Dequantizationl, taking as our working example the case of the Poincaré group in 1+1 space-time dimensions. We also compare this approach to the familiar geometric quantization method, which turns out to be less versatile than the new one.
14#
發(fā)表于 2025-3-24 00:16:07 | 只看該作者
15#
發(fā)表于 2025-3-24 04:34:45 | 只看該作者
d theory, geometric quantization and symplectic geometry, coherent states methods, holomorphic representation theory, Poisson structures, non-commutative geometry, supersymmetry and quantum groups. The editors have the pleasant task of first thanking all the local organizers, in particular Dr. K. Gilewicz, fo978-1-4615-2564-6
16#
發(fā)表于 2025-3-24 07:55:40 | 只看該作者
17#
發(fā)表于 2025-3-24 11:01:57 | 只看該作者
18#
發(fā)表于 2025-3-24 16:58:07 | 只看該作者
Geometric Quantization of String Theory Using Twistor ApproachThe geometric quantization scheme for the string theory is formulated in terms of a symplectic twistor bundle over the phase manifold.
19#
發(fā)表于 2025-3-24 22:06:35 | 只看該作者
20#
發(fā)表于 2025-3-25 01:11:35 | 只看該作者
On the Spectrum of the Geodesic Flow on SpheresWe propose a uniform method for derivation of the energy spectrum of the geodesic flow of the sphere .. (and hence of the Kepler problem) for all dimensions . ≥ 1. The idea is to use Marsden-Weinstein reduction in the context of equivariant cohomology. The one-dimensional case is thus covered by the general geometric quantization scheme.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 03:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通山县| 靖边县| 商都县| 邢台市| 东宁县| 西乌珠穆沁旗| 扎兰屯市| 运城市| 东台市| 蚌埠市| 内黄县| 同德县| 民丰县| 甘南县| 阳城县| 屏东市| 赤水市| 九龙坡区| 海丰县| 英吉沙县| 崇信县| 正阳县| 北川| 南丹县| 双辽市| 会理县| 抚远县| 柘荣县| 平凉市| 新疆| 舟曲县| 科尔| 建阳市| 林州市| 沾化县| 云安县| 佛坪县| 广南县| 平潭县| 上高县| 遂川县|