找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantitative Tamarkin Theory; Jun Zhang Textbook 2020 Springer Nature Switzerland AG 2020 Tamarkin category theory.Tamarkin microlocal cat

[復(fù)制鏈接]
樓主: DIGN
11#
發(fā)表于 2025-3-23 10:32:07 | 只看該作者
2522-5200 ategorical approach to microlocal sheaf theory that contrast.This textbook offers readers a self-contained introduction to quantitative Tamarkin category theory. Functioning as a viable alternative to the standard algebraic analysis method, the categorical approach explored in this book makes microl
12#
發(fā)表于 2025-3-23 17:50:27 | 只看該作者
Applications in Symplectic Geometry, open domain . of a Euclidean space. The core of this subject lies in a concept called .-projector. There is a section, from a joint work with Leonid Polterovich, devoted to a geometric interpretation of a .-projector. Finally, after defining a sheaf invariant of a domain, we give a quick proof of Gromov’s non-squeezing theorem.
13#
發(fā)表于 2025-3-23 18:43:26 | 只看該作者
Introduction,s: Gromov’s non-squeezing theorem and Arnold’s conjecture (Lagrangian version). Then a discussion on the key concept of singular support follows, with an emphasis on its geometric interpretation. With the concept of singular support, Tamarkin categories will be described, and the Guillermou-Kashiwar
14#
發(fā)表于 2025-3-24 01:50:01 | 只看該作者
15#
發(fā)表于 2025-3-24 02:28:49 | 只看該作者
16#
發(fā)表于 2025-3-24 07:59:01 | 只看該作者
17#
發(fā)表于 2025-3-24 12:58:15 | 只看該作者
18#
發(fā)表于 2025-3-24 16:39:17 | 只看該作者
19#
發(fā)表于 2025-3-24 22:23:55 | 只看該作者
20#
發(fā)表于 2025-3-24 23:30:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 11:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
盘锦市| 云龙县| 囊谦县| 德格县| 庐江县| 东辽县| 婺源县| 石城县| 南澳县| 铜川市| 三原县| 杂多县| 乐都县| 扶风县| 泰和县| 调兵山市| 凉城县| 米泉市| 申扎县| 济阳县| 丰县| 申扎县| 孙吴县| 临城县| 鞍山市| 腾冲县| 上饶市| 承德市| 遂平县| 洪江市| 望都县| 定南县| 博罗县| 琼结县| 准格尔旗| 盐城市| 遂昌县| 庐江县| 嫩江县| 汾西县| 阜平县|