找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantitative Economics with R; A Data Science Appro Vikram Dayal Textbook 2020 Springer Nature Singapore Pte Ltd. 2020 R.Time Series Data.C

[復(fù)制鏈接]
樓主: burgeon
21#
發(fā)表于 2025-3-25 04:31:22 | 只看該作者
IntroductionThe reasons for a data science approach are briefly discussed. An overview of the book is presented, followed by a brief explanation of key elements of R code.
22#
發(fā)表于 2025-3-25 07:29:53 | 只看該作者
23#
發(fā)表于 2025-3-25 14:46:52 | 只看該作者
Wrangling and Graphing DataFirst, we see how graphs can reveal with the Anscombe data. Then the relationship between carbon and livelihoods is explored. Last, we use the WDI package to access data.
24#
發(fā)表于 2025-3-25 18:31:34 | 只看該作者
FunctionsTo begin we see how we can make our own simple functions in R. We then plot functions quickly with R’s curve function. We consider supply and demand and the Cobb–Douglas production function.
25#
發(fā)表于 2025-3-25 23:49:19 | 只看該作者
Difference EquationsWe examine how a variable changes over time with a simple example of a difference equation. We see how we can simulate the values of the variable over time and plot the values. We see difference equations related to carbon stocks, fishing and stock pollutants.
26#
發(fā)表于 2025-3-26 00:24:08 | 只看該作者
27#
發(fā)表于 2025-3-26 05:07:43 | 只看該作者
Statistical InferenceWe use box models to illustrate statistical significance. We use simulation to understand sampling distributions and confidence intervals. We then look at simulation-based methods for statistical inference—the bootstrap and permutation tests.
28#
發(fā)表于 2025-3-26 09:22:17 | 只看該作者
Causal InferenceSimulation is used to illuminate causal inference. We begin with a short look at causal graphs and potential outcomes. We then aim to understand and see examples of experiments, regression adjustment, matching and sensitivity analysis, regression discontinuity, difference-in-difference, Manski bounds and instrumental variables.
29#
發(fā)表于 2025-3-26 13:58:34 | 只看該作者
30#
發(fā)表于 2025-3-26 19:05:52 | 只看該作者
Growth CausesWe replicate an important paper regarding the causal effect of institutions on growth. We then consider the relationship between geography and growth. We briefly consider the issue of testing the exclusion restriction.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丰都县| 永兴县| 长汀县| 九江市| 芜湖县| 罗定市| 台前县| 阿拉尔市| 肥西县| 屏东县| 会同县| 灵璧县| 内江市| 平山县| 赣榆县| 三都| 赞皇县| 安多县| 嘉鱼县| 武义县| 甘南县| 玉屏| 翼城县| 铜川市| 神农架林区| 重庆市| 泽普县| 堆龙德庆县| 华阴市| 方正县| 台山市| 黔西| 宜阳县| 离岛区| 瑞昌市| 景洪市| 南和县| 鱼台县| 呼和浩特市| 涞水县| 蓝山县|