找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantitative Arithmetic of Projective Varieties; Timothy D. Browning Book 2009 Birkh?user Basel 2009 Diophantine equation.Manin conjecture

[復(fù)制鏈接]
查看: 48821|回復(fù): 42
樓主
發(fā)表于 2025-3-21 16:58:54 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Quantitative Arithmetic of Projective Varieties
編輯Timothy D. Browning
視頻videohttp://file.papertrans.cn/781/780796/780796.mp4
概述Winner of the Ferran Sunyer i Balaguer Prize 2009.First attempt to systematically survey the range of available tools from analytic number theory that can be applied to study the density of rational p
叢書名稱Progress in Mathematics
圖書封面Titlebook: Quantitative Arithmetic of Projective Varieties;  Timothy D. Browning Book 2009 Birkh?user Basel 2009 Diophantine equation.Manin conjecture
出版日期Book 2009
關(guān)鍵詞Diophantine equation; Manin conjectures; del Pezzo surfaces; number theory; uniform bounds
版次1
doihttps://doi.org/10.1007/978-3-0346-0129-0
isbn_ebook978-3-0346-0129-0Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightBirkh?user Basel 2009
The information of publication is updating

書目名稱Quantitative Arithmetic of Projective Varieties影響因子(影響力)




書目名稱Quantitative Arithmetic of Projective Varieties影響因子(影響力)學(xué)科排名




書目名稱Quantitative Arithmetic of Projective Varieties網(wǎng)絡(luò)公開度




書目名稱Quantitative Arithmetic of Projective Varieties網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Quantitative Arithmetic of Projective Varieties被引頻次




書目名稱Quantitative Arithmetic of Projective Varieties被引頻次學(xué)科排名




書目名稱Quantitative Arithmetic of Projective Varieties年度引用




書目名稱Quantitative Arithmetic of Projective Varieties年度引用學(xué)科排名




書目名稱Quantitative Arithmetic of Projective Varieties讀者反饋




書目名稱Quantitative Arithmetic of Projective Varieties讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:56:30 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:24:55 | 只看該作者
地板
發(fā)表于 2025-3-22 04:54:40 | 只看該作者
5#
發(fā)表于 2025-3-22 10:22:53 | 只看該作者
,The Hardy—Littlewood circle method,ded is rather large compared to the degree. Nonetheless, the circle method can still be used as a purely heuristic tool when the number of variables is smaller. Thus, in Section 8.3, we will provide some evidence for Manin’s Conjecture 2.3 in the setting of diagonal cubic surfaces.
6#
發(fā)表于 2025-3-22 15:58:50 | 只看該作者
7#
發(fā)表于 2025-3-22 17:09:57 | 只看該作者
The dimension growth conjecture, one might still ask whether anything meaningful can be said about the corresponding counting function ., as defined in (1.6). In contrast to the preceding chapter, where precise asymptotic formulae were sought for . for suitable open subsets .?., the aim of the present chapter is to seek general up
8#
發(fā)表于 2025-3-23 00:19:22 | 只看該作者
Uniform bounds for curves and surfaces,rves which are restricted to lie in a box. The most important feature of their estimate is its uniformity with respect to the particular curve. Thus if .? . is an irreducible plane curve of degree . with integer coefficients, then they establish a bound of the form . for any ε>0. Here the implied co
9#
發(fā)表于 2025-3-23 01:29:56 | 只看該作者
A1 del Pezzo surface of degree 6,ne in ?. is defined by the intersection of 5 hyperplanes. It is not hard to see that the equations . all define lines contained in .. Table 2.6 ensures that these are the only lines contained in .. We set . to be the open subset of . obtained by deleting the lines.
10#
發(fā)表于 2025-3-23 06:12:52 | 只看該作者
D4 del Pezzo surface of degree 3,s, and one checks that the lines . are all contained in ., for distinct indices . ∈ {1, 2} and . ∈ {3, 4}. Let . ? . be the open subset formed by deleting these lines from .. Our task is to estimate ., with the goal of establishing Theorem 2.1. Our proof of this result will be in two stages. Firstly
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 15:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
祁阳县| 肥城市| 体育| 闻喜县| 香格里拉县| 宝清县| 金山区| 平山县| 青龙| 阿图什市| 贡嘎县| 河东区| 垫江县| 杂多县| 汉沽区| 历史| 洛隆县| 都安| 罗甸县| 都兰县| 正安县| 普兰县| 鄱阳县| 温泉县| 清水县| 富宁县| 柳江县| 鄱阳县| 辛集市| 大冶市| 杭锦后旗| 偏关县| 嘉义市| 崇左市| 沁阳市| 桃园县| 会理县| 永城市| 读书| 龙江县| 张家界市|