找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantile Regression in Clinical Research; Complete analysis fo Ton J. Cleophas,Aeilko H. Zwinderman Textbook 2021 The Editor(s) (if applica

[復(fù)制鏈接]
樓主: aspirant
21#
發(fā)表于 2025-3-25 04:51:00 | 只看該作者
Intercept only Poisson Regression Versus Quantilele will be given from Kirkwood and Sterne (Standardization, in: Medical Statistics, Chap. 25, Blackwell Science, Oxford UK 2003) studied the age and sex adjusted mortality rate of onchocerciasis patients already blind, and the authors tested it versus non blind patients using Poisson regression. The
22#
發(fā)表于 2025-3-25 09:08:48 | 只看該作者
Four Predictors Regressions Versus Quantile treatment predicted hours of sleep with a p-value of 0.02. In the multiple variables linear regression analysis the predictors group (treatment modality), age, gender (male/female), and co-morbidity were assessed. The predictors group (treatment modality) and age were significant at p?=?0.010 and p
23#
發(fā)表于 2025-3-25 14:09:30 | 只看該作者
Gene Expressions Regressions, Traditional Versus Quantilession showed that 6 genes were very significant independent predictors of drug efficacy scores. When tested against quantile regression, the results of the traditional multiple variables regression and the quantile regressions were pretty much similar, but the quantile regressions sometimes provided
24#
發(fā)表于 2025-3-25 16:40:38 | 只看該作者
25#
發(fā)表于 2025-3-25 23:12:40 | 只看該作者
26#
發(fā)表于 2025-3-26 01:37:39 | 只看該作者
Laboratory Values Predict Survival Sepsis, Traditional Regression Versus Quantile effect of laboratory predictors on survival/septic death was assessed. Traditional predictors consisted of binary logistic regression with the logodds of survival from sepsis as outcome and the various laboratory values as predictors. Bilirubine, c-reactive protein, leucos are significant predictor
27#
發(fā)表于 2025-3-26 06:53:30 | 只看該作者
Multinomial Regression Versus Quantileuces a lot of significant p-values and the investigators may rapidly be at a loss to know how to interpret them. Moreover, some readers may reject the multiple p-value approach and consider it a case of plenty type I errors of finding differences, where there are none. However, currently, test stati
28#
發(fā)表于 2025-3-26 10:52:40 | 只看該作者
Traditional and Robust Regressions Versus Quantileression tends to give a better view of the relationships between predictor and outcome variables. In the example of this chapter quantile analysis not only provided better precision, but also a better insight into the relationship between the predictor and outcome variable.
29#
發(fā)表于 2025-3-26 16:18:25 | 只看該作者
Continuous Trend Testing Versus Quantile Regression this chapter quantile analysis not only better precision, but also better insight into the relationship between the predictor and outcome variable was obtained with p-values of 0.001 and 0.0001 rather than 0.050.
30#
發(fā)表于 2025-3-26 18:32:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 02:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
林州市| 永顺县| 彰化县| 繁峙县| 阿拉尔市| 潍坊市| 三门县| 自治县| 新密市| 新巴尔虎右旗| 玉林市| 通海县| 临洮县| 宾川县| 古蔺县| 获嘉县| 灌南县| 长丰县| 河间市| 龙陵县| 南昌市| 古交市| 彝良县| 余江县| 陈巴尔虎旗| 台北县| 武宣县| 南涧| 霍邱县| 三门峡市| 油尖旺区| 郧西县| 道孚县| 观塘区| 张北县| 闽侯县| 遂川县| 通江县| 肥西县| 奉化市| 湖南省|