找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantifier Elimination and Cylindrical Algebraic Decomposition; Bob F. Caviness,Jeremy R. Johnson Conference proceedings 1998 Springer-Ver

[復(fù)制鏈接]
樓主: 可怖
21#
發(fā)表于 2025-3-25 04:00:46 | 只看該作者
22#
發(fā)表于 2025-3-25 08:41:22 | 只看該作者
23#
發(fā)表于 2025-3-25 12:40:30 | 只看該作者
24#
發(fā)表于 2025-3-25 19:07:24 | 只看該作者
Conference proceedings 1998losed fields brought a major breakthrough in automating mathematics with recent important applications in high-tech areas (e.g. robot motion), also stimulating fundamental research in computer algebra over the past three decades.This volume is a state-of-the-art collection of important papers on CAD
25#
發(fā)表于 2025-3-25 23:30:54 | 只看該作者
0943-853X ebraic Decomposition (CAD) as a method for Quantifier Elimination (QE) for the elementary theory of real closed fields brought a major breakthrough in automating mathematics with recent important applications in high-tech areas (e.g. robot motion), also stimulating fundamental research in computer a
26#
發(fā)表于 2025-3-26 00:28:50 | 只看該作者
Super-Exponential Complexity of Presburger Arithmetic,al addition and for all sufficiently large ., there is a sentence of length . for which the decision procedure runs for more than 2. steps. In the case of Presburger arithmetic, the corresponding bound is .. These bounds apply also to the minimal lengths of proofs for any complete axiomatization in which the axioms are easily recognized.
27#
發(fā)表于 2025-3-26 07:20:23 | 只看該作者
28#
發(fā)表于 2025-3-26 12:02:20 | 只看該作者
29#
發(fā)表于 2025-3-26 14:46:01 | 只看該作者
30#
發(fā)表于 2025-3-26 17:05:18 | 只看該作者
,Quantifier Elimination by Cylindrical Algebraic Decomposition — Twenty Years of Progress,d by the author in 1973 at Carnegie Mellon University (Collins 1973b). In the twenty years since then several very important improvements have been made to the method which, together with a very large increase in available computational power, have made it possible to solve in seconds or minutes som
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 17:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙游县| 得荣县| 新余市| 永德县| 南京市| 巴青县| 竹溪县| 陆良县| 宁陵县| 石家庄市| 高台县| 乌苏市| 张家界市| 广丰县| 康马县| 兰考县| 和平区| 永仁县| 抚州市| 天气| 新疆| 西峡县| 扎囊县| 惠州市| 搜索| 广水市| 梅河口市| 景洪市| 克东县| 吉林市| 沙坪坝区| 山阴县| 北安市| 清新县| 祥云县| 布尔津县| 金昌市| 武乡县| 定西市| 浪卡子县| 始兴县|