找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantifier Elimination and Cylindrical Algebraic Decomposition; Bob F. Caviness,Jeremy R. Johnson Conference proceedings 1998 Springer-Ver

[復(fù)制鏈接]
樓主: 可怖
21#
發(fā)表于 2025-3-25 04:00:46 | 只看該作者
22#
發(fā)表于 2025-3-25 08:41:22 | 只看該作者
23#
發(fā)表于 2025-3-25 12:40:30 | 只看該作者
24#
發(fā)表于 2025-3-25 19:07:24 | 只看該作者
Conference proceedings 1998losed fields brought a major breakthrough in automating mathematics with recent important applications in high-tech areas (e.g. robot motion), also stimulating fundamental research in computer algebra over the past three decades.This volume is a state-of-the-art collection of important papers on CAD
25#
發(fā)表于 2025-3-25 23:30:54 | 只看該作者
0943-853X ebraic Decomposition (CAD) as a method for Quantifier Elimination (QE) for the elementary theory of real closed fields brought a major breakthrough in automating mathematics with recent important applications in high-tech areas (e.g. robot motion), also stimulating fundamental research in computer a
26#
發(fā)表于 2025-3-26 00:28:50 | 只看該作者
Super-Exponential Complexity of Presburger Arithmetic,al addition and for all sufficiently large ., there is a sentence of length . for which the decision procedure runs for more than 2. steps. In the case of Presburger arithmetic, the corresponding bound is .. These bounds apply also to the minimal lengths of proofs for any complete axiomatization in which the axioms are easily recognized.
27#
發(fā)表于 2025-3-26 07:20:23 | 只看該作者
28#
發(fā)表于 2025-3-26 12:02:20 | 只看該作者
29#
發(fā)表于 2025-3-26 14:46:01 | 只看該作者
30#
發(fā)表于 2025-3-26 17:05:18 | 只看該作者
,Quantifier Elimination by Cylindrical Algebraic Decomposition — Twenty Years of Progress,d by the author in 1973 at Carnegie Mellon University (Collins 1973b). In the twenty years since then several very important improvements have been made to the method which, together with a very large increase in available computational power, have made it possible to solve in seconds or minutes som
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 06:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阆中市| 疏附县| 石屏县| 虹口区| 白水县| 横山县| 库尔勒市| 永济市| 吉安县| 阿城市| 扬中市| 桐乡市| 房山区| 怀化市| 台安县| 靖远县| 宿迁市| 象州县| 巴彦淖尔市| 彭州市| 五指山市| 青阳县| 沾化县| 日照市| 鸡东县| 丰顺县| 安吉县| 龙川县| 黄陵县| 内黄县| 洮南市| 昭平县| 阿拉善盟| 六枝特区| 信丰县| 稻城县| 佛教| 鸡西市| 黔西县| 游戏| 淅川县|