找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantenmechanik für Fortgeschrittene (QM II); Franz Schwabl Textbook 20043rd edition Springer-Verlag Berlin Heidelberg 2004 Dirac-Gleichun

[復(fù)制鏈接]
樓主: fasten
31#
發(fā)表于 2025-3-26 21:52:39 | 只看該作者
32#
發(fā)表于 2025-3-27 04:12:22 | 只看該作者
BosonenIn diesem Abschnitt betrachten wir charakteristische Eigenschaften von nicht wechselwirkenden Bosonen. Zun?chst berechnen wir die Paarverteilungsfunktion, um Korrelationseffekte zu studieren.
33#
發(fā)表于 2025-3-27 05:51:21 | 只看該作者
Aufstellung von relativistischen WellengleichungenDie Quantentheorie basiert auf den folgenden Axiomen.:
34#
發(fā)表于 2025-3-27 12:27:15 | 只看該作者
35#
發(fā)表于 2025-3-27 15:00:20 | 只看該作者
Freie FelderIn diesem Kapitel werden die Ergebnisse des vorhergehenden Kapitels auf das freie reelle und komplexe Klein—Gordon—Feld, auf das Dirac—Feld und das Strahlungsfeld angewandt und die grundlegenden Eigenschaften dieser freien Feldtheorien abgeleitet. Au?erdem wird das Spin—Statistik—Theorem bewiesen.
36#
發(fā)表于 2025-3-27 20:03:00 | 只看該作者
Wechselwirkende Felder, QuantenelektrodynamikWir kommen nun zur Behandlung wechselwirkender Felder. Durch nichtlineare Terme in der Lagrange-Dichte bzw. im Hamilton-Operator sind übergangsprozesse zwischen Teilchen m?glich. Das einfachste Modell-Beispiel ist ein neutrales skalares Feld mit Selbstwechselwirkung, ..
37#
發(fā)表于 2025-3-27 22:06:55 | 只看該作者
38#
發(fā)表于 2025-3-28 02:26:14 | 只看該作者
39#
發(fā)表于 2025-3-28 08:22:54 | 只看該作者
Lorentz-Transformationen und Kovarianz der Dirac-Gleichung Dirac-Gleichung folgen. Zun?chst werden einige als bekannt vorausgesetzte Eigenschaften der Lorentz-Transformation zusammengestellt. Der an der L?sung konkreter Probleme interessierte Leser kann die folgenden Abschnitte übergehen und sich sofort Abschn. 6.3 und den folgenden Kapiteln zuwenden.
40#
發(fā)表于 2025-3-28 11:10:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
修文县| 高碑店市| 宜阳县| 彩票| 钟祥市| 香港| 太仆寺旗| 东平县| 汾西县| 乐陵市| 图们市| 长寿区| 大安市| 库尔勒市| 云林县| 石渠县| 萝北县| 革吉县| 衡水市| 车险| 侯马市| 泰州市| 资中县| 中超| 青阳县| 噶尔县| 安徽省| 巴塘县| 襄汾县| 宿迁市| 离岛区| 长海县| 剑阁县| 忻城县| 资阳市| 武定县| 普兰县| 梁河县| 明溪县| 贵港市| 霍城县|