找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Qualitative Properties of Dispersive PDEs; Vladimir Georgiev,Alessandro Michelangeli,Raffaele Conference proceedings 2022 The Editor(s) (i

[復(fù)制鏈接]
樓主: Body-Mass-Index
21#
發(fā)表于 2025-3-25 03:35:49 | 只看該作者
22#
發(fā)表于 2025-3-25 10:56:06 | 只看該作者
23#
發(fā)表于 2025-3-25 14:03:18 | 只看該作者
24#
發(fā)表于 2025-3-25 16:05:41 | 只看該作者
25#
發(fā)表于 2025-3-25 20:23:50 | 只看該作者
A Note on Small Data Soliton Selection for Nonlinear Schr?dinger Equations with Potentialdied in (Cuccagna and Maeda, Anal PDE 8(6):1289–1349, 2015; Cuccagna and Maeda, Ann PDE 7:16, 2021). As in (Cuccagna and Maeda, Ann PDE 7:16, 2021), we use the notion of refined profile, but unlike in (Cuccagna and Maeda, Ann PDE 7:16, 2021), we do not modify the modulation coordinates and do not se
26#
發(fā)表于 2025-3-26 01:06:55 | 只看該作者
Dynamics of Solutions to the Gross–Pitaevskii Equation Describing Dipolar Bose–Einstein Condensatess. We describe the asymptotic behaviors of solutions for different initial configurations of the initial datum in the energy space, specifically for data below, above, and at the mass–energy threshold. We revisit some properties of powers of the Riesz transforms by means of the decay properties of t
27#
發(fā)表于 2025-3-26 06:46:25 | 只看該作者
Nonlinear Schr?dinger Equation with Singularitiesgular initial conditions and equations with a delta potential in three dimensions. The existence and uniqueness of solutions are proved in the Colombeau algebra setting and the notion of compatibility of solutions is explored.
28#
發(fā)表于 2025-3-26 09:32:10 | 只看該作者
29#
發(fā)表于 2025-3-26 15:45:24 | 只看該作者
Heat Equation with Inverse-Square Potential of Bridging Type Across Two Half-Linesem is the lowest energy (zero-momentum) mode of the transmission of the heat flow across a Grushin-type cylinder, a generalisation of an almost-Riemannian structure with compact singularity set. This and related models are reviewed, and the issue is posed of the analysis of the dispersive properties
30#
發(fā)表于 2025-3-26 17:45:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 15:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
塔河县| 泸州市| 侯马市| 施甸县| 蕲春县| 甘南县| 会泽县| 客服| 定襄县| 金昌市| 彭州市| 甘肃省| 勐海县| 朝阳市| 五寨县| 达日县| 松滋市| 巴塘县| 水城县| 昌乐县| 和硕县| 康马县| 红原县| 成都市| 楚雄市| 黔西| 碌曲县| 大邑县| 和硕县| 洪泽县| 堆龙德庆县| 元阳县| 永泰县| 康乐县| 象州县| 汶上县| 普洱| 永川市| 霍邱县| 扬中市| 孙吴县|