找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Qualitative Properties of Dispersive PDEs; Vladimir Georgiev,Alessandro Michelangeli,Raffaele Conference proceedings 2022 The Editor(s) (i

[復(fù)制鏈接]
樓主: Body-Mass-Index
21#
發(fā)表于 2025-3-25 03:35:49 | 只看該作者
22#
發(fā)表于 2025-3-25 10:56:06 | 只看該作者
23#
發(fā)表于 2025-3-25 14:03:18 | 只看該作者
24#
發(fā)表于 2025-3-25 16:05:41 | 只看該作者
25#
發(fā)表于 2025-3-25 20:23:50 | 只看該作者
A Note on Small Data Soliton Selection for Nonlinear Schr?dinger Equations with Potentialdied in (Cuccagna and Maeda, Anal PDE 8(6):1289–1349, 2015; Cuccagna and Maeda, Ann PDE 7:16, 2021). As in (Cuccagna and Maeda, Ann PDE 7:16, 2021), we use the notion of refined profile, but unlike in (Cuccagna and Maeda, Ann PDE 7:16, 2021), we do not modify the modulation coordinates and do not se
26#
發(fā)表于 2025-3-26 01:06:55 | 只看該作者
Dynamics of Solutions to the Gross–Pitaevskii Equation Describing Dipolar Bose–Einstein Condensatess. We describe the asymptotic behaviors of solutions for different initial configurations of the initial datum in the energy space, specifically for data below, above, and at the mass–energy threshold. We revisit some properties of powers of the Riesz transforms by means of the decay properties of t
27#
發(fā)表于 2025-3-26 06:46:25 | 只看該作者
Nonlinear Schr?dinger Equation with Singularitiesgular initial conditions and equations with a delta potential in three dimensions. The existence and uniqueness of solutions are proved in the Colombeau algebra setting and the notion of compatibility of solutions is explored.
28#
發(fā)表于 2025-3-26 09:32:10 | 只看該作者
29#
發(fā)表于 2025-3-26 15:45:24 | 只看該作者
Heat Equation with Inverse-Square Potential of Bridging Type Across Two Half-Linesem is the lowest energy (zero-momentum) mode of the transmission of the heat flow across a Grushin-type cylinder, a generalisation of an almost-Riemannian structure with compact singularity set. This and related models are reviewed, and the issue is posed of the analysis of the dispersive properties
30#
發(fā)表于 2025-3-26 17:45:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 21:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳新县| 深圳市| 临西县| 石嘴山市| 宝应县| 清流县| 蓝山县| 邻水| 永定县| 太仓市| 芒康县| 衡阳市| 西乌珠穆沁旗| 冀州市| 祁东县| 佛山市| 二连浩特市| 安龙县| 长治县| 宜城市| 荃湾区| 康平县| 蛟河市| 太仓市| 多伦县| 永修县| 左贡县| 萨嘎县| 满洲里市| 德昌县| 阿克苏市| 扬中市| 盐山县| 克什克腾旗| 乌鲁木齐县| 平阴县| 凤阳县| 广丰县| 濮阳市| 合山市| 黔西县|