找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Quadratic Number Fields; Franz Lemmermeyer Textbook 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Sprin

[復(fù)制鏈接]
查看: 43439|回復(fù): 46
樓主
發(fā)表于 2025-3-21 19:54:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Quadratic Number Fields
編輯Franz Lemmermeyer
視頻videohttp://file.papertrans.cn/781/780052/780052.mp4
概述Connects quadratic fields with modern algebraic number theory.Applies the theory to solve Diophantine equations.Contains hundreds of exercises with solutions.Includes original historical commentary
叢書(shū)名稱(chēng)Springer Undergraduate Mathematics Series
圖書(shū)封面Titlebook: Quadratic Number Fields;  Franz Lemmermeyer Textbook 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Sprin
描述This undergraduate textbook provides an elegant introduction to the arithmetic of quadratic number fields, including many topics not usually covered in books at this level. .Quadratic fields offer an introduction to algebraic number theory and some of its central objects: rings of integers, the unit group, ideals and the ideal class group. This textbook provides solid grounding for further study by placing the subject within the greater context of modern algebraic number theory. Going beyond what is usually covered at this level, the book introduces the notion of modularity in the context of quadratic reciprocity, explores the close links between number theory and geometry via Pell conics, and presents applications to Diophantine equations such as the Fermat and Catalan equations as well as elliptic curves. Throughout, the book contains extensive historical comments, numerous exercises (with solutions), and pointers to further study...Assuming a moderate background in elementary number theory and abstract algebra, .Quadratic Number Fields. offers an engaging first course in algebraic number theory, suitable for upper undergraduate students..
出版日期Textbook 2021
關(guān)鍵詞quadratic fields; Pell equation; class group; Gauss sum; Pell conics; modularity; Fermat‘s last theorem; Ca
版次1
doihttps://doi.org/10.1007/978-3-030-78652-6
isbn_softcover978-3-030-78651-9
isbn_ebook978-3-030-78652-6Series ISSN 1615-2085 Series E-ISSN 2197-4144
issn_series 1615-2085
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱(chēng)Quadratic Number Fields影響因子(影響力)




書(shū)目名稱(chēng)Quadratic Number Fields影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Quadratic Number Fields網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Quadratic Number Fields網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Quadratic Number Fields被引頻次




書(shū)目名稱(chēng)Quadratic Number Fields被引頻次學(xué)科排名




書(shū)目名稱(chēng)Quadratic Number Fields年度引用




書(shū)目名稱(chēng)Quadratic Number Fields年度引用學(xué)科排名




書(shū)目名稱(chēng)Quadratic Number Fields讀者反饋




書(shū)目名稱(chēng)Quadratic Number Fields讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:46:48 | 只看該作者
Textbook 2021n books at this level. .Quadratic fields offer an introduction to algebraic number theory and some of its central objects: rings of integers, the unit group, ideals and the ideal class group. This textbook provides solid grounding for further study by placing the subject within the greater context o
板凳
發(fā)表于 2025-3-22 00:31:30 | 只看該作者
地板
發(fā)表于 2025-3-22 07:13:28 | 只看該作者
5#
發(fā)表于 2025-3-22 09:54:01 | 只看該作者
6#
發(fā)表于 2025-3-22 15:09:55 | 只看該作者
7#
發(fā)表于 2025-3-22 19:32:33 | 只看該作者
8#
發(fā)表于 2025-3-23 01:14:53 | 只看該作者
9#
發(fā)表于 2025-3-23 02:12:22 | 只看該作者
Arithmetic in Some Quadratic Number Fields,In this chapter we present examples of norm-Euclidean quadratic number fields and apply the results to the Fermat equations with exponents 3, 4, and 5.
10#
發(fā)表于 2025-3-23 08:02:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 09:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平顺县| 关岭| 鹿邑县| 平顶山市| 略阳县| 昌黎县| 凤山市| 邵东县| 三都| 尉氏县| 荆州市| 元朗区| 沾化县| 甘孜| 宁陕县| 晋州市| 宜宾市| 右玉县| 临邑县| 莲花县| 塔城市| 葫芦岛市| 保靖县| 酉阳| 木兰县| 濮阳县| 贺州市| 泽普县| 高邑县| 高陵县| 得荣县| 都匀市| 油尖旺区| 昭通市| 内江市| 紫金县| 揭西县| 抚顺县| 乐陵市| 鄂托克前旗| 怀宁县|