找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Quadratic Forms in Infinite Dimensional Vector Spaces; Herbert Gross Book 1979 Springer Science+Business Media New York 1979 algebra.Divis

[復(fù)制鏈接]
查看: 51884|回復(fù): 61
樓主
發(fā)表于 2025-3-21 18:02:43 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Quadratic Forms in Infinite Dimensional Vector Spaces
編輯Herbert Gross
視頻videohttp://file.papertrans.cn/781/780049/780049.mp4
叢書(shū)名稱Progress in Mathematics
圖書(shū)封面Titlebook: Quadratic Forms in Infinite Dimensional Vector Spaces;  Herbert Gross Book 1979 Springer Science+Business Media New York 1979 algebra.Divis
描述For about a decade I have made an effort to study quadratic forms in infinite dimensional vector spaces over arbitrary division rings. Here we present in a systematic fashion half of the results found du- ring this period, to wit, the results on denumerably infinite spaces (" NO-forms‘‘‘). Certain among the results included here had of course been published at the time when they were found, others appear for the first time (the case, for example, in Chapters IX, X , XII where I in- clude results contained in the Ph.D.theses by my students W. Allenspach, L. Brand, U. Schneider, M. Studer). If one wants to give an introduction to the geometric algebra of infinite dimensional quadratic spaces, a discussion of N-dimensional O spaces ideally serves the purpose. First, these spaces show a large number of phenomena typical of infinite dimensional spaces. Second, most proofs can be done by recursion which resembles the familiar pro- cedure by induction in the finite dimensional situation. Third, the student acquires a good feeling for the linear algebra in infinite di- mensions because it is impossible to camouflage problems by topological expedients (in dimension NO it is easy to see, in
出版日期Book 1979
關(guān)鍵詞algebra; Division; Finite; language; linear algebra; proof; quadratic form; recursion; ring; time; Vector spac
版次1
doihttps://doi.org/10.1007/978-1-4899-3542-7
isbn_softcover978-0-8176-1111-8
isbn_ebook978-1-4899-3542-7Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Science+Business Media New York 1979
The information of publication is updating

書(shū)目名稱Quadratic Forms in Infinite Dimensional Vector Spaces影響因子(影響力)




書(shū)目名稱Quadratic Forms in Infinite Dimensional Vector Spaces影響因子(影響力)學(xué)科排名




書(shū)目名稱Quadratic Forms in Infinite Dimensional Vector Spaces網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Quadratic Forms in Infinite Dimensional Vector Spaces網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Quadratic Forms in Infinite Dimensional Vector Spaces被引頻次




書(shū)目名稱Quadratic Forms in Infinite Dimensional Vector Spaces被引頻次學(xué)科排名




書(shū)目名稱Quadratic Forms in Infinite Dimensional Vector Spaces年度引用




書(shū)目名稱Quadratic Forms in Infinite Dimensional Vector Spaces年度引用學(xué)科排名




書(shū)目名稱Quadratic Forms in Infinite Dimensional Vector Spaces讀者反饋




書(shū)目名稱Quadratic Forms in Infinite Dimensional Vector Spaces讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:11:18 | 只看該作者
Classification of Subspaces in Spaces with Definite Forms,for all x, y ∈ k.: or k is a quaternion algebra . with k. ordered, α, β < 0 and τ being the usual “conjugation”. If τ = 1, possible only when k is commutative, then ? is symmetric and k = k. is ordered.
板凳
發(fā)表于 2025-3-22 03:02:51 | 只看該作者
Introduction,s (see References to Chapter XI) there has been, as far as we know, only Kaplansky’s 1950 paper on infinite dimensional spaces pointing our way, namely in the direction of a purely algebraic theory of quadratic forms on infinite dimensional vector spaces over “arbitrary” division rings. Such a theor
地板
發(fā)表于 2025-3-22 06:48:12 | 只看該作者
Fundamentals on Sesquilinear Forms,hat are used throughout the text. A number of fundamental definitions have been inserted in later chapters; whenever it had been possible to introduce a concept right where it is needed without interrupting the flow of ideas we have postponed its introduction.
5#
發(fā)表于 2025-3-22 09:22:52 | 只看該作者
,Diagonalization of ?0-Forms,ecomposition into mutually orthogonal lines is impossible. The problem of “normalizing” bases brings us to stability and the beginner is confronted with the first Ping-Pong style proof with its characteristic back-and-forth argument (Theorem 2). These matters are basic and their knowledge is tacitly
6#
發(fā)表于 2025-3-22 15:49:42 | 只看該作者
Classification of Hermitean Forms in Characteristic 2,he additive subgroups S ? {α ∈ k|α = εα*} and T ? {α + εα*|α ∈ k} of “symmetric” elements and of “traces” respectively. The factor group S/T is a k-left vectorspace under the composition λ (σ+T) = λσλ* + T (σ ∈ S, λ ∈ k). ?: S → S/T is the canonical map.
7#
發(fā)表于 2025-3-22 20:18:48 | 只看該作者
8#
發(fā)表于 2025-3-22 23:53:26 | 只看該作者
9#
發(fā)表于 2025-3-23 03:17:37 | 只看該作者
Classification of Subspaces in Spaces with Definite Forms,it follows from Dieudonné’s lemma that k is either a quadratic extension k = k. (γ) over an ordered field (k., <) with 0 > γ. ∈ k. and (x+yγ). = x-yγ for all x, y ∈ k.: or k is a quaternion algebra . with k. ordered, α, β < 0 and τ being the usual “conjugation”. If τ = 1, possible only when k is com
10#
發(fā)表于 2025-3-23 09:35:41 | 只看該作者
Quadratic Forms, partly overlap (cf. Example 2 in Section 3 below). For the purpose of illustration we start with the classical notion of a quadratic form . on a k-vector space E over a commutative field k of arbitrary characteristic. The map Q is called a quadratic form if 1) we have Q(λx) = λ.Q(x) for all λ ∈ k,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 13:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
威海市| 东台市| 陆川县| 咸宁市| 金华市| 银川市| 任丘市| 延边| 化德县| 瑞丽市| 闵行区| 兴义市| 内丘县| 兴和县| 无极县| 瑞丽市| 长丰县| 太仓市| 朝阳县| 海淀区| 勐海县| 永吉县| 内江市| 顺昌县| 临汾市| 六枝特区| 县级市| 德安县| 神木县| 玉山县| 抚顺市| 岳普湖县| 英吉沙县| 噶尔县| 秦安县| 渝北区| 巨鹿县| 镇雄县| 禹州市| 辛集市| 剑河县|