找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quadratic Forms in Infinite Dimensional Vector Spaces; Herbert Gross Book 1979 Springer Science+Business Media New York 1979 algebra.proof

[復(fù)制鏈接]
樓主: genial
21#
發(fā)表于 2025-3-25 03:32:33 | 只看該作者
Classification of Hermitean Forms in Characteristic 2,All forms considered in this chapter are E-hermitean forms over a field k of characteristic 2 equipped with antiautomorphism ???..
22#
發(fā)表于 2025-3-25 08:43:38 | 只看該作者
23#
發(fā)表于 2025-3-25 11:39:36 | 只看該作者
Involutions in Hermitean Spaces in Characteristic Two,Fields and forms are as specified under the caption of Chapter VIII.
24#
發(fā)表于 2025-3-25 17:07:51 | 只看該作者
Extension of Isometries,The main result in this chapter is a theorem in [1] on the extension of isometries φ: V →V between ⊥-closed subspaces of a sesquilinear space E (Theorems 5 and 9 below).
25#
發(fā)表于 2025-3-25 21:48:36 | 只看該作者
26#
發(fā)表于 2025-3-26 02:51:53 | 只看該作者
27#
發(fā)表于 2025-3-26 07:57:13 | 只看該作者
28#
發(fā)表于 2025-3-26 11:14:35 | 只看該作者
Quadratic Forms,Quadratic forms are closely related to orthosymmetric sesquilinear forms and, to a large extent, they behave very similarly. In fact, the two concepts partly overlap (cf. Example 2 in Section 3 below).
29#
發(fā)表于 2025-3-26 13:10:25 | 只看該作者
30#
發(fā)表于 2025-3-26 19:14:56 | 只看該作者
,Diagonalization of ?0-Forms,ecomposition into mutually orthogonal lines is impossible. The problem of “normalizing” bases brings us to stability and the beginner is confronted with the first Ping-Pong style proof with its characteristic back-and-forth argument (Theorem 2). These matters are basic and their knowledge is tacitly assumed in the rest of the book.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 01:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
明水县| 昌平区| 东阳市| 奉化市| 马尔康县| 文水县| 资源县| 齐齐哈尔市| 芦山县| 喀喇| 同德县| 平武县| 丹寨县| 安龙县| 大方县| 阿瓦提县| 平湖市| 本溪市| 象山县| 双江| 曲水县| 湘乡市| 曲水县| 乌拉特中旗| 新巴尔虎左旗| 望城县| 白河县| 长阳| 兴业县| 永胜县| 安康市| 齐齐哈尔市| 延边| 松桃| 保亭| 读书| 吉林省| 襄城县| 中江县| 新昌县| 富锦市|