找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Quadratic Algebras, Clifford Algebras, and Arithmetic Witt Groups; Alexander J. Hahn Textbook 1994 Springer-Verlag New York, Inc. 1994 Ari

[復(fù)制鏈接]
樓主: 生動(dòng)
51#
發(fā)表于 2025-3-30 10:39:43 | 只看該作者
Dis(R) and Qu(R), a domain which is integrally closed in its field of fractions F. In this case, see Section D, separable quadratic algebras can be characterized as the integral closures of R in quadratic Galois extensions of F in which all prime ideals of R are unramified.
52#
發(fā)表于 2025-3-30 15:24:38 | 只看該作者
53#
發(fā)表于 2025-3-30 17:42:45 | 只看該作者
54#
發(fā)表于 2025-3-31 00:13:08 | 只看該作者
55#
發(fā)表于 2025-3-31 01:12:37 | 只看該作者
56#
發(fā)表于 2025-3-31 06:52:33 | 只看該作者
57#
發(fā)表于 2025-3-31 12:50:47 | 只看該作者
Brauer Groups and Witt Groups,s, proofs or sketches of proofs are provided only when they seemed not available in appropriately explicit form. The constructions are presented in the generality of commutative rings and then illustrated in the classical situations: over the real and complex numbers, and local and global fields.
58#
發(fā)表于 2025-3-31 14:32:08 | 只看該作者
The Arithmetic of Wq(R),tion of Ker . implies that Wq(R) ? Cl(R). ⊕ G, where C1(R) is the ideal class group of R and G is a free Abelian group of rank with r the number of real embeddings of the number field. An additional focus is the comparison of the number theory of Wq(R) with that of W(R) and the structure of the quotient W(R)/Wq(R).
59#
發(fā)表于 2025-3-31 20:30:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 12:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南部县| 四平市| 通州区| 大埔区| 库尔勒市| 海兴县| 邵武市| 阿克苏市| 福泉市| 绿春县| 南召县| 万州区| 枝江市| 东山县| 云龙县| 商河县| 通化市| 平昌县| 定南县| 错那县| 集贤县| 黔江区| 新晃| 光泽县| 广州市| 砚山县| 外汇| 象山县| 六盘水市| 双柏县| 且末县| 屏东县| 上犹县| 汤原县| 汾阳市| 大田县| 湖州市| 宜兰县| 惠来县| 万年县| 内乡县|