找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: QRD-RLS Adaptive Filtering; José Antonio Apolinário Book 2009 Springer-Verlag US 2009 Adaptive Filter.DSP.QRD-RLS algorithms.adaptive filt

[復(fù)制鏈接]
查看: 27498|回復(fù): 49
樓主
發(fā)表于 2025-3-21 18:37:13 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱QRD-RLS Adaptive Filtering
編輯José Antonio Apolinário
視頻videohttp://file.papertrans.cn/781/780017/780017.mp4
概述Provides a comprehensive framework of QRD-RLS adaptive filtering.Compiles the research of more than a decade into a single publication.Includes an important class of algorithms that are efficient in t
圖書(shū)封面Titlebook: QRD-RLS Adaptive Filtering;  José Antonio Apolinário Book 2009 Springer-Verlag US 2009 Adaptive Filter.DSP.QRD-RLS algorithms.adaptive filt
描述I feel very honoured to have been asked to write a brief foreword for this book on QRD-RLS Adaptive Filtering–asubjectwhichhas been close to my heart for many years. The book is well written and very timely – I look forward personally to seeing it in print. The editor is to be congratulated on assembling such a highly esteemed team of contributing authors able to span the broad range of topics and concepts which underpin this subject. In many respects, and for reasons well expounded by the authors, the LMS al- rithm has reigned supreme since its inception, as the algorithm of choice for prac- cal applications of adaptive ltering. However, as a result of the relentless advances in electronic technology, the demand for stable and ef cient RLS algorithms is growing rapidly – not just because the higher computational load is no longer such a serious barrier, but also because the technological pull has grown much stronger in the modern commercial world of 3G mobile communications, cognitive radio, high speed imagery, and so on.
出版日期Book 2009
關(guān)鍵詞Adaptive Filter; DSP; QRD-RLS algorithms; adaptive filtering; algorithms; filter; filtering; filters; stabil
版次1
doihttps://doi.org/10.1007/978-0-387-09734-3
isbn_softcover978-1-4419-3526-7
isbn_ebook978-0-387-09734-3
copyrightSpringer-Verlag US 2009
The information of publication is updating

書(shū)目名稱QRD-RLS Adaptive Filtering影響因子(影響力)




書(shū)目名稱QRD-RLS Adaptive Filtering影響因子(影響力)學(xué)科排名




書(shū)目名稱QRD-RLS Adaptive Filtering網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱QRD-RLS Adaptive Filtering網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱QRD-RLS Adaptive Filtering被引頻次




書(shū)目名稱QRD-RLS Adaptive Filtering被引頻次學(xué)科排名




書(shū)目名稱QRD-RLS Adaptive Filtering年度引用




書(shū)目名稱QRD-RLS Adaptive Filtering年度引用學(xué)科排名




書(shū)目名稱QRD-RLS Adaptive Filtering讀者反饋




書(shū)目名稱QRD-RLS Adaptive Filtering讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:51:08 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:02:10 | 只看該作者
地板
發(fā)表于 2025-3-22 06:38:44 | 只看該作者
5#
發(fā)表于 2025-3-22 11:51:03 | 只看該作者
Shiunn-Jang Chernmake smart agriculture. The preprocessing of raw data into a machine learning-friendly dataset that can be easily computed is the first step in ensuring ML models to perform non-relational feature selection. To reduce redundancy and make optimized deep learning models which help to predict accurate
6#
發(fā)表于 2025-3-22 13:04:43 | 只看該作者
7#
發(fā)表于 2025-3-22 17:12:10 | 只看該作者
8#
發(fā)表于 2025-3-22 23:26:12 | 只看該作者
QRD Least-Squares Lattice Algorithms,s at each time step. Therefore, linear interpolation theory may provide a bridge between lattice filters and transversal filters. The chapter is organized as follows. Section 5.1 presents the fundamentals of QRD-LSL algorithms. The LSL interpolator and the LSL predictor are briefly presented in Sect
9#
發(fā)表于 2025-3-23 02:12:52 | 只看該作者
Householder-Based RLS Algorithms,ia the application of appropriate row orthogonal Householder transformations. Finally, a sliding window block RLS algorithm, which comprises a pair of row Householder transforms, is introduced in Section 7.5.
10#
發(fā)表于 2025-3-23 07:13:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广昌县| 邓州市| 武川县| 台中县| 顺义区| 古浪县| 类乌齐县| 兰州市| 叙永县| 长沙县| 岳阳县| 乡宁县| 深州市| 大竹县| 莒南县| 迭部县| 江北区| 安吉县| 邢台市| 连云港市| 唐山市| 商水县| 津南区| 海口市| 桐城市| 雷波县| 延安市| 来安县| 会东县| 修武县| 夏津县| 宣威市| 江油市| 镇巴县| 饶平县| 同江市| 宜城市| 屏山县| 敦化市| 平潭县| 东港市|