找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: p-adic Numbers, p-adic Analysis, and Zeta-Functions; Neal Koblitz Textbook 1984Latest edition Springer Science+Business Media New York 198

[復(fù)制鏈接]
查看: 51547|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:37:33 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱p-adic Numbers, p-adic Analysis, and Zeta-Functions
編輯Neal Koblitz
視頻videohttp://file.papertrans.cn/765/764608/764608.mp4
叢書(shū)名稱Graduate Texts in Mathematics
圖書(shū)封面Titlebook: p-adic Numbers, p-adic Analysis, and Zeta-Functions;  Neal Koblitz Textbook 1984Latest edition Springer Science+Business Media New York 198
描述Neal Koblitz was a student of Nicholas M. Katz, under whom he received his Ph.D. in mathematics at Princeton in 1974. He spent the year 1974 -75 and the spring semester 1978 in Moscow, where he did research in p -adic analysis and also translated Yu. I. Manin‘s "Course in Mathematical Logic" (GTM 53). He taught at Harvard from 1975 to 1979, and since 1979 has been at the University of Washington in Seattle. He has published papers in number theory, algebraic geometry, and p-adic analysis, and he is the author of "p-adic Analysis: A Short Course on Recent Work" (Cambridge University Press and GTM 97: "Introduction to Elliptic Curves and Modular Forms (Springer-Verlag).
出版日期Textbook 1984Latest edition
關(guān)鍵詞Algebra; Analysis; Functions; Numbers; Zetafunktion; calculus; finite field; number theory; p-adische Analys
版次2
doihttps://doi.org/10.1007/978-1-4612-1112-9
isbn_softcover978-1-4612-7014-0
isbn_ebook978-1-4612-1112-9Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightSpringer Science+Business Media New York 1984
The information of publication is updating

書(shū)目名稱p-adic Numbers, p-adic Analysis, and Zeta-Functions影響因子(影響力)




書(shū)目名稱p-adic Numbers, p-adic Analysis, and Zeta-Functions影響因子(影響力)學(xué)科排名




書(shū)目名稱p-adic Numbers, p-adic Analysis, and Zeta-Functions網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱p-adic Numbers, p-adic Analysis, and Zeta-Functions網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱p-adic Numbers, p-adic Analysis, and Zeta-Functions被引頻次




書(shū)目名稱p-adic Numbers, p-adic Analysis, and Zeta-Functions被引頻次學(xué)科排名




書(shū)目名稱p-adic Numbers, p-adic Analysis, and Zeta-Functions年度引用




書(shū)目名稱p-adic Numbers, p-adic Analysis, and Zeta-Functions年度引用學(xué)科排名




書(shū)目名稱p-adic Numbers, p-adic Analysis, and Zeta-Functions讀者反饋




書(shū)目名稱p-adic Numbers, p-adic Analysis, and Zeta-Functions讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:21:53 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:05:49 | 只看該作者
地板
發(fā)表于 2025-3-22 07:22:56 | 只看該作者
5#
發(fā)表于 2025-3-22 11:28:34 | 只看該作者
978-1-4612-7014-0Springer Science+Business Media New York 1984
6#
發(fā)表于 2025-3-22 14:55:25 | 只看該作者
7#
發(fā)表于 2025-3-22 19:04:21 | 只看該作者
8#
發(fā)表于 2025-3-22 21:31:48 | 只看該作者
-adic numbers,If . is a nonempty set, a distance, or ., on . is a function . from pairs of elements (., .) of . to the nonnegative real numbers such that.A set . together with a metric . is called a .. The same set . can give rise to many different metric spaces (.), as we’ll soon see.
9#
發(fā)表于 2025-3-23 04:54:11 | 只看該作者
10#
發(fā)表于 2025-3-23 06:19:58 | 只看該作者
,Building up Ω,In what follows, we’ll have to assume familiarity with a few basic notions concerning algebraic extensions of fields. It would take us too far afield to review all the proofs; for a complete and readable treatment, see Lang’s . or Herstein’s ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 14:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浦东新区| 西吉县| 伊宁市| 新龙县| 苏尼特左旗| 明星| 朝阳市| 阿克陶县| 沁源县| 长武县| 仙游县| 佛坪县| 泉州市| 海淀区| 扶风县| 溆浦县| 梁平县| 罗甸县| 吴旗县| 南澳县| 区。| 内黄县| 湛江市| 华池县| 顺昌县| 固阳县| 潍坊市| 鄂托克旗| 郑州市| 喀喇| 济源市| 阆中市| 疏附县| 兰坪| 万源市| 新化县| 扶余县| 旬阳县| 钟祥市| 离岛区| 富民县|