找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: p-adic Numbers; An Introduction Fernando Q. Gouvêa Textbook 19972nd edition Springer-Verlag Berlin Heidelberg 1997 Algebra.absolute values

[復(fù)制鏈接]
查看: 55389|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:02:47 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱p-adic Numbers
副標(biāo)題An Introduction
編輯Fernando Q. Gouvêa
視頻videohttp://file.papertrans.cn/765/764605/764605.mp4
概述Includes supplementary material:
叢書名稱Universitext
圖書封面Titlebook: p-adic Numbers; An Introduction Fernando Q. Gouvêa Textbook 19972nd edition Springer-Verlag Berlin Heidelberg 1997 Algebra.absolute values
描述In the course of their undergraduate careers, most mathematics majors see little beyond "standard mathematics:" basic real and complex analysis, ab- stract algebra, some differential geometry, etc. There are few adventures in other territories, and few opportunities to visit some of the more exotic cor- ners of mathematics. The goal of this book is to offer such an opportunity, by way of a visit to the p-adic universe. Such a visit offers a glimpse of a part of mathematics which is both important and fun, and which also is something of a meeting point between algebra and analysis. Over the last century, p-adic numbers and p-adic analysis have come to playa central role in modern number theory. This importance comes from the fact that they afford a natural and powerful language for talking about congruences between integers, and allow the use of methods borrowed from calculus and analysis for studying such problems. More recently, p-adic num- bers have shown up in other areas of mathematics, and even in physics.
出版日期Textbook 19972nd edition
關(guān)鍵詞Algebra; absolute values on fields; calculus; finite field; number theory; p-adic analysis; p-adic numbers
版次2
doihttps://doi.org/10.1007/978-3-642-59058-0
isbn_ebook978-3-642-59058-0Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag Berlin Heidelberg 1997
The information of publication is updating

書目名稱p-adic Numbers影響因子(影響力)




書目名稱p-adic Numbers影響因子(影響力)學(xué)科排名




書目名稱p-adic Numbers網(wǎng)絡(luò)公開度




書目名稱p-adic Numbers網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱p-adic Numbers被引頻次




書目名稱p-adic Numbers被引頻次學(xué)科排名




書目名稱p-adic Numbers年度引用




書目名稱p-adic Numbers年度引用學(xué)科排名




書目名稱p-adic Numbers讀者反饋




書目名稱p-adic Numbers讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:30:18 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:20:54 | 只看該作者
Introduction,rners of mathematics. The goal of this book is to offer such an opportunity, by way of a visit to the .-adic universe. Such a visit offers a glimpse of a part of mathematics which is both important and fun, and which also is something of a meeting point between algebra and analysis.
地板
發(fā)表于 2025-3-22 05:40:30 | 只看該作者
,-adic Numbers,ery hard. Nevertheless, we have preferred to stick, at first, to the most concrete example available. In a later chapter, we will consider some aspects of the problem of extending valuations from ? to larger fields. More details about the theory of valuations on global fields can be found in several of the references.
5#
發(fā)表于 2025-3-22 11:50:28 | 只看該作者
6#
發(fā)表于 2025-3-22 16:16:15 | 只看該作者
7#
發(fā)表于 2025-3-22 18:49:52 | 只看該作者
8#
發(fā)表于 2025-3-22 21:18:18 | 只看該作者
9#
發(fā)表于 2025-3-23 04:49:03 | 只看該作者
10#
發(fā)表于 2025-3-23 07:24:22 | 只看該作者
Vector Spaces and Field Extensions,lds (for example, when we dealt with the zeros of a function defined by a power series). In fact, just as we have emphasized the natural analogy between the .-adic fields ?. and the field ? of real numbers, it is a very natural thing to do to look for an extension of ?. that is analogous to the comp
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 10:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兴城市| 社会| 鄂州市| 抚松县| 祁阳县| 郁南县| 泰来县| 维西| 翁源县| 静乐县| 万山特区| 清丰县| 桓仁| 扬州市| 鹤庆县| 阿鲁科尔沁旗| 冷水江市| 南和县| 卫辉市| 精河县| 望江县| 梓潼县| 屏东市| 曲阜市| 府谷县| 安阳市| 兴仁县| 维西| 闻喜县| 滁州市| 濉溪县| 招远市| 隆回县| 邵阳市| 边坝县| 澳门| 绥阳县| 营口市| 湖州市| 高唐县| 溧水县|