找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Pseudodifferential Methods in Number Theory; André Unterberger Book 2018 Springer Nature Switzerland AG 2018 pseudodifferential analysis i

[復制鏈接]
查看: 26290|回復: 35
樓主
發(fā)表于 2025-3-21 18:31:09 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Pseudodifferential Methods in Number Theory
編輯André Unterberger
視頻videohttp://file.papertrans.cn/763/762525/762525.mp4
概述Explores a new approach to the Riemann hypothesis.Explains the link between the theory of modular distributions and the classical one of modular forms.Includes previously unpublished material
叢書名稱Pseudo-Differential Operators
圖書封面Titlebook: Pseudodifferential Methods in Number Theory;  André Unterberger Book 2018 Springer Nature Switzerland AG 2018 pseudodifferential analysis i
描述.Classically developed as a tool for partial differential equations, the?analysis of operators known as pseudodifferential analysis is here regarded?as a possible help in questions of arithmetic. The operators which make up?the main subject of the book can be characterized in terms of congruence?arithmetic.?They enjoy a Eulerian structure, and are applied to the search?for new conditions equivalent to the Riemann hypothesis. These consist in?the validity of certain parameter-dependent estimates for a class of Hermitian?forms of finite rank. The Littlewood criterion, involving sums of?M?bius coefficients, and the Weil so-called explicit formula, which leads to?his positivity criterion, fit within this scheme, using in the first case Weyl‘s?pseudodifferential calculus, in the second case Fuchs‘.?.The book should be?of interest to people looking for new possible approaches to the Riemann?hypothesis, also to newperspectives on pseudodifferential analysis and on?the way it combines with modular form theory. Analysts will have no difficulty with the arithmetic aspects, with which, save for very few exceptions,?no previous acquaintance is necessary..
出版日期Book 2018
關鍵詞pseudodifferential analysis in arithmetic; approach to the zeros of Riemann‘s zeta function; modular d
版次1
doihttps://doi.org/10.1007/978-3-319-92707-7
isbn_softcover978-3-319-92706-0
isbn_ebook978-3-319-92707-7Series ISSN 2297-0355 Series E-ISSN 2297-0363
issn_series 2297-0355
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

書目名稱Pseudodifferential Methods in Number Theory影響因子(影響力)




書目名稱Pseudodifferential Methods in Number Theory影響因子(影響力)學科排名




書目名稱Pseudodifferential Methods in Number Theory網(wǎng)絡公開度




書目名稱Pseudodifferential Methods in Number Theory網(wǎng)絡公開度學科排名




書目名稱Pseudodifferential Methods in Number Theory被引頻次




書目名稱Pseudodifferential Methods in Number Theory被引頻次學科排名




書目名稱Pseudodifferential Methods in Number Theory年度引用




書目名稱Pseudodifferential Methods in Number Theory年度引用學科排名




書目名稱Pseudodifferential Methods in Number Theory讀者反饋




書目名稱Pseudodifferential Methods in Number Theory讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:56:56 | 只看該作者
第162525主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:12:26 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:39:48 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 10:49:00 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:56:43 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:12:41 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:54:23 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 05:01:03 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:12:47 | 只看該作者
10樓
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 08:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
安仁县| 阳江市| 惠安县| 平山县| 西丰县| 汾阳市| 临朐县| 柏乡县| 阿克苏市| 栾川县| 临潭县| 沧源| 巴塘县| 巴彦县| 定安县| 吉木萨尔县| 来凤县| 南投县| 富裕县| 光泽县| 民县| 博客| 布尔津县| 酒泉市| 乌什县| 壶关县| 格尔木市| 普格县| 顺昌县| 阳城县| 潮安县| 南安市| 张掖市| 西充县| 仁怀市| 崇文区| 兴义市| 安泽县| 龙川县| 乌什县| 兴和县|