找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents; Alex Kaltenbach Book 2023 The Editor(s) (if applicable) and

[復(fù)制鏈接]
查看: 41476|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:12:31 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents
編輯Alex Kaltenbach
視頻videohttp://file.papertrans.cn/763/762509/762509.mp4
概述Includes the first proof of the existence of weak solutions of the unsteady p(t,x)-Navier-Stokes equations.Provides a comprehensive review of the rapidly expanding field of unsteady problems with vari
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents;  Alex Kaltenbach Book 2023 The Editor(s) (if applicable) and
描述This book provides a comprehensive analysis of the existence of weak solutions of unsteady problems with variable exponents. The central motivation is the weak solvability of the unsteady p(.,.)-Navier–Stokes equations describing the motion of an incompressible electro-rheological fluid. Due to the variable dependence of the power-law index p(.,.) in this system, the classical weak existence analysis based on the pseudo-monotone operator theory in the framework of Bochner–Lebesgue spaces is not applicable. As a substitute for Bochner–Lebesgue spaces, variable Bochner–Lebesgue spaces are introduced and analyzed. In the mathematical framework of this substitute, the theory of pseudo-monotone operators is extended to unsteady problems with variable exponents, leading to the weak solvability of the unsteady p(.,.)-Navier–Stokes equations under general assumptions..Aimed primarily at graduate readers, the book develops the material step-by-step, starting with the basics of PDE theory andnon-linear functional analysis. The concise introductions at the beginning of each chapter, together with illustrative examples, graphics, detailed derivations of all results and a short summary of the f
出版日期Book 2023
關(guān)鍵詞Existence of Weak Solutions; Variable Exponent Lebesgue Spaces; Variable Exponent Bochner-Lebesgue Spa
版次1
doihttps://doi.org/10.1007/978-3-031-29670-3
isbn_softcover978-3-031-29669-7
isbn_ebook978-3-031-29670-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents影響因子(影響力)




書目名稱Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents影響因子(影響力)學(xué)科排名




書目名稱Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents網(wǎng)絡(luò)公開度




書目名稱Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents被引頻次




書目名稱Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents被引頻次學(xué)科排名




書目名稱Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents年度引用




書目名稱Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents年度引用學(xué)科排名




書目名稱Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents讀者反饋




書目名稱Pseudo-Monotone Operator Theory for Unsteady Problems with Variable Exponents讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:14:02 | 只看該作者
第162509主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:18:05 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 07:51:44 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 10:12:00 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:07:19 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:44:10 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 01:06:42 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:31:00 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 05:49:17 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 00:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁波市| 马尔康县| 宁国市| 石台县| 大洼县| 秭归县| 承德县| 神木县| 鹿泉市| 曲沃县| 兰西县| 乐安县| 普宁市| 昌吉市| 松阳县| 吉安县| 沁阳市| 区。| 青神县| 攀枝花市| 那坡县| 兴安县| 武宣县| 土默特左旗| 喀喇沁旗| 邳州市| 南汇区| 晋城| 丹凤县| 汝南县| 海盐县| 肃南| 五指山市| 柳河县| 阳东县| 石景山区| 新野县| 申扎县| 大同县| 盱眙县| 霍邱县|