找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Propagation of Multidimensional Nonlinear Waves and Kinematical Conservation Laws; Phoolan Prasad Book 2017 Springer Nature Singapore Pte

[復(fù)制鏈接]
查看: 37363|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:11:13 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Propagation of Multidimensional Nonlinear Waves and Kinematical Conservation Laws
編輯Phoolan Prasad
視頻videohttp://file.papertrans.cn/762/761293/761293.mp4
概述Discusses the latest developments in kinematical conservation laws.Includes numerous interesting applications to propagation of weak nonlinear waves and weak shock waves.Deals with one of the most cha
叢書名稱Infosys Science Foundation Series
圖書封面Titlebook: Propagation of Multidimensional Nonlinear Waves and Kinematical Conservation Laws;  Phoolan Prasad Book 2017 Springer Nature Singapore Pte
描述This book formulates the kinematical conservation laws (KCL), analyses them and presents their applications to various problems in physics. Finally, it addresses one of the most challenging problems in fluid dynamics: finding successive positions of a curved shock front. The topics discussed are the outcome of collaborative work that was carried out mainly at the Indian Institute of Science, Bengaluru, India. The theory presented in the book is supported by referring to extensive numerical results..The book is organised into ten chapters. Chapters 1–4 offer a summary of and briefly discuss the theory of hyperbolic partial differential equations and conservation laws. Formulation of equations of a weakly nonlinear wavefront and those of a shock front are briefly explained in Chapter 5, while Chapter 6 addresses KCL theory in space of arbitrary dimensions. The remaining chapters examine various analyses and applications of KCL equations ending in the ultimate goal-propagation of a three-dimensional curved shock front and formation, propagation and interaction of kink lines on it..
出版日期Book 2017
關(guān)鍵詞Kinematical conservation laws; Curved shock propagation; Nonlinear hyperbolic waves; Hyperbolic partial
版次1
doihttps://doi.org/10.1007/978-981-10-7581-0
isbn_softcover978-981-13-3970-7
isbn_ebook978-981-10-7581-0Series ISSN 2363-6149 Series E-ISSN 2363-6157
issn_series 2363-6149
copyrightSpringer Nature Singapore Pte Ltd. 2017
The information of publication is updating

書目名稱Propagation of Multidimensional Nonlinear Waves and Kinematical Conservation Laws影響因子(影響力)




書目名稱Propagation of Multidimensional Nonlinear Waves and Kinematical Conservation Laws影響因子(影響力)學(xué)科排名




書目名稱Propagation of Multidimensional Nonlinear Waves and Kinematical Conservation Laws網(wǎng)絡(luò)公開度




書目名稱Propagation of Multidimensional Nonlinear Waves and Kinematical Conservation Laws網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Propagation of Multidimensional Nonlinear Waves and Kinematical Conservation Laws被引頻次




書目名稱Propagation of Multidimensional Nonlinear Waves and Kinematical Conservation Laws被引頻次學(xué)科排名




書目名稱Propagation of Multidimensional Nonlinear Waves and Kinematical Conservation Laws年度引用




書目名稱Propagation of Multidimensional Nonlinear Waves and Kinematical Conservation Laws年度引用學(xué)科排名




書目名稱Propagation of Multidimensional Nonlinear Waves and Kinematical Conservation Laws讀者反饋




書目名稱Propagation of Multidimensional Nonlinear Waves and Kinematical Conservation Laws讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:38:58 | 只看該作者
第161293主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:31:43 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 07:25:51 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:12:02 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:22:09 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:07:01 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:50:20 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 03:13:51 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 08:52:12 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 22:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
万山特区| 高陵县| 兴山县| 上饶市| 灵山县| 公主岭市| 灵寿县| 黔西县| 松潘县| 盐池县| 永安市| 蕉岭县| 南溪县| 吴川市| 乐山市| 平顶山市| 平和县| 昌邑市| 海宁市| 平泉县| 金秀| 乐至县| 饶河县| 化隆| 昆明市| 岳西县| 四子王旗| 扶风县| 宿迁市| 山西省| 古蔺县| 巨鹿县| 英山县| 桦甸市| 益阳市| 涿州市| 新巴尔虎左旗| 青州市| 盐城市| 万年县| 涟源市|