找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Proof Methods for Modal and Intuitionistic Logics; Melvin Fitting Book 1983 Springer Science+Business Media Dordrecht 1983 English literat

[復(fù)制鏈接]
查看: 26416|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:58:43 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Proof Methods for Modal and Intuitionistic Logics
編輯Melvin Fitting
視頻videohttp://file.papertrans.cn/762/761247/761247.mp4
叢書名稱Synthese Library
圖書封面Titlebook: Proof Methods for Modal and Intuitionistic Logics;  Melvin Fitting Book 1983 Springer Science+Business Media Dordrecht 1983 English literat
描述"Necessity is the mother of invention. " Part I: What is in this book - details. There are several different types of formal proof procedures that logicians have invented. The ones we consider are: 1) tableau systems, 2) Gentzen sequent calculi, 3) natural deduction systems, and 4) axiom systems. We present proof procedures of each of these types for the most common normal modal logics: S5, S4, B, T, D, K, K4, D4, KB, DB, and also G, the logic that has become important in applications of modal logic to the proof theory of Peano arithmetic. Further, we present a similar variety of proof procedures for an even larger number of regular, non-normal modal logics (many introduced by Lemmon). We also consider some quasi-regular logics, including S2 and S3. Virtually all of these proof procedures are studied in both propositional and first-order versions (generally with and without the Barcan formula). Finally, we present the full variety of proof methods for Intuitionistic logic (and of course Classical logic too). We actually give two quite different kinds of tableau systems for the logics we consider, two kinds of Gentzen sequent calculi, and two kinds of natural deduction systems. Each
出版日期Book 1983
關(guān)鍵詞English literature; literature; logic; modal logic; notation; present; proposition; quantifiers
版次1
doihttps://doi.org/10.1007/978-94-017-2794-5
isbn_softcover978-90-481-8381-4
isbn_ebook978-94-017-2794-5Series ISSN 0166-6991 Series E-ISSN 2542-8292
issn_series 0166-6991
copyrightSpringer Science+Business Media Dordrecht 1983
The information of publication is updating

書目名稱Proof Methods for Modal and Intuitionistic Logics影響因子(影響力)




書目名稱Proof Methods for Modal and Intuitionistic Logics影響因子(影響力)學(xué)科排名




書目名稱Proof Methods for Modal and Intuitionistic Logics網(wǎng)絡(luò)公開度




書目名稱Proof Methods for Modal and Intuitionistic Logics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Proof Methods for Modal and Intuitionistic Logics被引頻次




書目名稱Proof Methods for Modal and Intuitionistic Logics被引頻次學(xué)科排名




書目名稱Proof Methods for Modal and Intuitionistic Logics年度引用




書目名稱Proof Methods for Modal and Intuitionistic Logics年度引用學(xué)科排名




書目名稱Proof Methods for Modal and Intuitionistic Logics讀者反饋




書目名稱Proof Methods for Modal and Intuitionistic Logics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:12:25 | 只看該作者
第161247主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:38:08 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:00:58 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 10:31:15 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:07:13 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 19:20:48 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:25:20 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 01:26:02 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 09:34:59 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 12:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
中方县| 会泽县| 巴彦淖尔市| 牡丹江市| 永安市| 石渠县| 长寿区| 东乡县| 井陉县| 象州县| 连山| 营山县| 格尔木市| 阳谷县| 八宿县| 集贤县| 手游| 清河县| 永康市| 白山市| 凭祥市| 泸水县| 抚顺市| 体育| 仪陇县| 鄂尔多斯市| 太康县| 英山县| 资兴市| 栖霞市| 浦城县| 南和县| 晋州市| 肇州县| 洮南市| 大英县| 泰兴市| 东台市| 岳阳市| 潮安县| 盘锦市|