找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Prominent Feature Extraction for Sentiment Analysis; Basant Agarwal,Namita Mittal Book 2016 The Editor(s) (if applicable) and The Author(s

[復(fù)制鏈接]
查看: 35562|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:41:42 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Prominent Feature Extraction for Sentiment Analysis
編輯Basant Agarwal,Namita Mittal
視頻videohttp://file.papertrans.cn/762/761170/761170.mp4
概述Includes a novel semantic parsing scheme which may be applied to many Natural language processing tasks.Provides an efficient machine learning approach for sentiment analysis.Easy to understand and de
叢書名稱Socio-Affective Computing
圖書封面Titlebook: Prominent Feature Extraction for Sentiment Analysis;  Basant Agarwal,Namita Mittal Book 2016 The Editor(s) (if applicable) and The Author(s
描述.The objective of this monograph is to improve the performance of the sentiment analysis model by incorporating the semantic, syntactic and common-sense knowledge. This book proposes a novel semantic concept extraction approach that uses dependency relations between words to extract the features from the text. Proposed approach combines the semantic and common-sense knowledge for the better understanding of the text. In addition, the book aims to extract prominent features from the unstructured text by eliminating the noisy, irrelevant and redundant features. Readers will also discover a proposed method for efficient dimensionality reduction to alleviate the data sparseness problem being faced by machine learning model. ..Authors pay attention to the four main findings of the book :. -Performance of the sentiment analysis can be improved by reducing the redundancy among the features. Experimental results show that minimum Redundancy Maximum Relevance (mRMR) feature selection technique improves the performance of the sentiment analysis by eliminating the redundant features.. - Boolean Multinomial Naive Bayes (BMNB) machine learning algorithm with mRMR feature selection technique per
出版日期Book 2016
關(guān)鍵詞Machine Learning; Minimum Redundancy and Maximum Relevance feature selection; Prominent Feature Extrac
版次1
doihttps://doi.org/10.1007/978-3-319-25343-5
isbn_softcover978-3-319-79775-5
isbn_ebook978-3-319-25343-5Series ISSN 2509-5706 Series E-ISSN 2509-5714
issn_series 2509-5706
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Prominent Feature Extraction for Sentiment Analysis影響因子(影響力)




書目名稱Prominent Feature Extraction for Sentiment Analysis影響因子(影響力)學(xué)科排名




書目名稱Prominent Feature Extraction for Sentiment Analysis網(wǎng)絡(luò)公開度




書目名稱Prominent Feature Extraction for Sentiment Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Prominent Feature Extraction for Sentiment Analysis被引頻次




書目名稱Prominent Feature Extraction for Sentiment Analysis被引頻次學(xué)科排名




書目名稱Prominent Feature Extraction for Sentiment Analysis年度引用




書目名稱Prominent Feature Extraction for Sentiment Analysis年度引用學(xué)科排名




書目名稱Prominent Feature Extraction for Sentiment Analysis讀者反饋




書目名稱Prominent Feature Extraction for Sentiment Analysis讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:52:14 | 只看該作者
第161170主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:09:39 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 04:35:14 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:11:50 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:08:07 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:18:12 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:35:02 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 01:56:24 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 08:13:59 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 01:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁海县| 靖州| 荔浦县| 苍溪县| 绿春县| 武穴市| 新疆| 东乌珠穆沁旗| 鸡泽县| 宜兴市| 靖宇县| 浮山县| 大化| 莱州市| 乌鲁木齐县| 林芝县| 龙川县| 峡江县| 锡林浩特市| 宁城县| 昌黎县| 琼结县| 绥芬河市| 金坛市| 望城县| 行唐县| 巫山县| 家居| 宜章县| 常熟市| 莒南县| 定西市| 突泉县| 通江县| 甘谷县| 关岭| 阿图什市| 栾川县| 廉江市| 宜都市| 长垣县|