找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Progress on the Study of the Ginibre Ensembles; Sung-Soo Byun,Peter J. Forrester Book‘‘‘‘‘‘‘‘ 2025 The Editor(s) (if applicable) and The A

[復(fù)制鏈接]
查看: 51065|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:20:49 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Progress on the Study of the Ginibre Ensembles
編輯Sung-Soo Byun,Peter J. Forrester
視頻videohttp://file.papertrans.cn/761/760798/760798.mp4
概述This book is open access, which means that you have free and unlimited access.Is the first book that focuses on the Ginibre ensembles .Presents the subject relevant to a broad range of researchers.Sui
叢書(shū)名稱KIAS Springer Series in Mathematics
圖書(shū)封面Titlebook: Progress on the Study of the Ginibre Ensembles;  Sung-Soo Byun,Peter J. Forrester Book‘‘‘‘‘‘‘‘ 2025 The Editor(s) (if applicable) and The A
描述.This open access book focuses on the Ginibre ensembles that are non-Hermitian random matrices proposed by Ginibre in 1965. Since that time, they have enjoyed prominence within random matrix theory, featuring, for example, the first book on the subject written by Mehta in 1967. Their status has been consolidated and extended over the following years, as more applications have come to light, and the theory has developed to greater depths. This book sets about detailing much of this progress. Themes covered include eigenvalue PDFs and correlation functions, fluctuation formulas, sum rules and asymptotic behaviors, normal matrix models, and applications to quantum many-body problems and quantum chaos. There is a distinction between the Ginibre ensemble with complex entries (GinUE) and those with real or quaternion entries (GinOE and GinSE, respectively)..First, the eigenvalues of GinUE form a determinantal point process, while those of GinOE and GinSE have the more complicated structure of a Pfaffian point process. Eigenvalues on the real line in the case of GinOE also provide another distinction. On the other hand, the increased complexity provides new opportunities for research. Thi
出版日期Book‘‘‘‘‘‘‘‘ 2025
關(guān)鍵詞Open Access; Ginibre Ensembles; Non-Hermitian Random Matrices; Determinantal Point Processes; Pfaffan Po
版次1
doihttps://doi.org/10.1007/978-981-97-5173-0
isbn_softcover978-981-97-5175-4
isbn_ebook978-981-97-5173-0Series ISSN 2731-5142 Series E-ISSN 2731-5150
issn_series 2731-5142
copyrightThe Editor(s) (if applicable) and The Author(s) 2025
The information of publication is updating

書(shū)目名稱Progress on the Study of the Ginibre Ensembles影響因子(影響力)




書(shū)目名稱Progress on the Study of the Ginibre Ensembles影響因子(影響力)學(xué)科排名




書(shū)目名稱Progress on the Study of the Ginibre Ensembles網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Progress on the Study of the Ginibre Ensembles網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Progress on the Study of the Ginibre Ensembles被引頻次




書(shū)目名稱Progress on the Study of the Ginibre Ensembles被引頻次學(xué)科排名




書(shū)目名稱Progress on the Study of the Ginibre Ensembles年度引用




書(shū)目名稱Progress on the Study of the Ginibre Ensembles年度引用學(xué)科排名




書(shū)目名稱Progress on the Study of the Ginibre Ensembles讀者反饋




書(shū)目名稱Progress on the Study of the Ginibre Ensembles讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:17:31 | 只看該作者
第160798主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 04:29:24 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:16:01 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 11:57:05 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:35:07 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:27:40 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:37:15 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 03:25:49 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:29:29 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 00:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
二连浩特市| 扎囊县| 勐海县| 乐业县| 象山县| 馆陶县| 年辖:市辖区| 广灵县| 武川县| 岱山县| 乐平市| 汝阳县| 郎溪县| 汤原县| 梅河口市| 肃北| 台安县| 菏泽市| 西安市| 新晃| 黔西县| 廊坊市| 吐鲁番市| 黎平县| 贵州省| 綦江县| 南木林县| 尼玛县| 齐齐哈尔市| 长顺县| 叙永县| 平湖市| 成都市| 承德市| 宜城市| 连平县| 金沙县| 上林县| 六枝特区| 宜昌市| 辉县市|