找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Progress in Galois Theory; Proceedings of John Helmut Voelklein,Tanush Shaska Conference proceedings 2005 Springer-Verlag US 2005 Arithmet

[復(fù)制鏈接]
查看: 19563|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:24:05 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Progress in Galois Theory
副標(biāo)題Proceedings of John
編輯Helmut Voelklein,Tanush Shaska
視頻videohttp://file.papertrans.cn/761/760493/760493.mp4
概述Contains recent results in this classical and elegant area of mathematics.Most of the authors are first class mathematicians with a wide reputation.Includes supplementary material:
叢書名稱Developments in Mathematics
圖書封面Titlebook: Progress in Galois Theory; Proceedings of John  Helmut Voelklein,Tanush Shaska Conference proceedings 2005 Springer-Verlag US 2005 Arithmet
描述The legacy of Galois was the beginning of Galois theory as well as group theory. From this common origin, the development of group theory took its own course, which led to great advances in the latter half of the 20th cen- tury. It was John Thompson who shaped finite group theory like no-one else, leading the way towards a major milestone of 20th century mathematics, the classification of finite simple groups. After the classification was announced around 1980, it was again J. Thomp- son who led the way in exploring its implications for Galois theory. The first question is whether all simple groups occur as Galois groups over the rationals (and related fields), and secondly, how can this be used to show that all finite groups occur (the ‘Inverse Problem of Galois Theory‘). What are the implica- tions for the stmcture and representations of the absolute Galois group of the rationals (and other fields)? Various other applications to algebra and number theory have been found, most prominently, to the theory of algebraic curves (e.g., the Guralnick-Thompson Conjecture on the Galois theory of covers of the Riemann sphere).
出版日期Conference proceedings 2005
關(guān)鍵詞Arithmetic; Galois theory; Grothendieck topology; Group theory; Invariant; Modular curve; Morphism; algebra
版次1
doihttps://doi.org/10.1007/b101762
isbn_softcover978-1-4419-3634-9
isbn_ebook978-0-387-23534-9Series ISSN 1389-2177 Series E-ISSN 2197-795X
issn_series 1389-2177
copyrightSpringer-Verlag US 2005
The information of publication is updating

書目名稱Progress in Galois Theory影響因子(影響力)




書目名稱Progress in Galois Theory影響因子(影響力)學(xué)科排名




書目名稱Progress in Galois Theory網(wǎng)絡(luò)公開度




書目名稱Progress in Galois Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Progress in Galois Theory被引頻次




書目名稱Progress in Galois Theory被引頻次學(xué)科排名




書目名稱Progress in Galois Theory年度引用




書目名稱Progress in Galois Theory年度引用學(xué)科排名




書目名稱Progress in Galois Theory讀者反饋




書目名稱Progress in Galois Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:58:09 | 只看該作者
第160493主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:00:05 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 07:54:07 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 11:47:04 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:21:15 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 18:41:50 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 21:21:19 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 03:27:34 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:44:11 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 09:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浦北县| 高尔夫| 凤山县| 三河市| 绥棱县| 出国| 罗江县| 霸州市| 奉新县| 仙桃市| 宜州市| 舟曲县| 抚宁县| 黄冈市| 峨山| 锦屏县| 靖宇县| 鲁甸县| 河池市| 灵寿县| 合川市| 延津县| 绥德县| 保德县| 连云港市| 措美县| 大冶市| 丽江市| 六枝特区| 徐水县| 合肥市| 福鼎市| 万宁市| 巴塘县| 临猗县| 浦江县| 金寨县| 云阳县| 美姑县| 许昌市| 兰考县|