找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Progress in Approximation Theory and Applicable Complex Analysis; In Memory of Q.I. Ra Narendra Kumar Govil,Ram Mohapatra,Gerhard Schmeis B

[復制鏈接]
查看: 41938|回復: 35
樓主
發(fā)表于 2025-3-21 18:49:00 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Progress in Approximation Theory and Applicable Complex Analysis
副標題In Memory of Q.I. Ra
編輯Narendra Kumar Govil,Ram Mohapatra,Gerhard Schmeis
視頻videohttp://file.papertrans.cn/761/760251/760251.mp4
概述Presents up to date research and advances in approximation theory.Bridges classical methods and contemporary approaches to solve problems.Contains new insights and serves as a guide to advanced topics
叢書名稱Springer Optimization and Its Applications
圖書封面Titlebook: Progress in Approximation Theory and Applicable Complex Analysis; In Memory of Q.I. Ra Narendra Kumar Govil,Ram Mohapatra,Gerhard Schmeis B
描述.Current and historical research methods in approximation theory are presented in this book beginning with the 1800s and following the evolution of approximation theory via the refinement and extension of classical methods and ending with recent techniques and methodologies. Graduate students, postdocs, and researchers in mathematics, specifically those working in the theory of functions, approximation theory, geometric function theory, and optimization will find new insights as well as a guide to advanced topics..The chapters in this book are grouped into four themes; the first, ?polynomials (Chapters 1 –8), includes inequalities for polynomials and rational functions, orthogonal polynomials, and location of zeros. The second, inequalities and extremal problems are discussed in Chapters 9 –13. The third, approximation of functions, involves the approximants being polynomials, rational functions, and other types of functions and are covered in Chapters 14 –19. The last theme, quadrature, cubature and applications, comprises the final three chapters and includes an article coauthored by Rahman..?. .This volume serves as a memorial volume to commemorate the distinguished career of Qa
出版日期Book 2017
關鍵詞Approximation Theory; Approximation by polynomials; Complex Analysis; Geometric function theory; Inequal
版次1
doihttps://doi.org/10.1007/978-3-319-49242-1
isbn_softcover978-3-319-84112-0
isbn_ebook978-3-319-49242-1Series ISSN 1931-6828 Series E-ISSN 1931-6836
issn_series 1931-6828
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書目名稱Progress in Approximation Theory and Applicable Complex Analysis影響因子(影響力)




書目名稱Progress in Approximation Theory and Applicable Complex Analysis影響因子(影響力)學科排名




書目名稱Progress in Approximation Theory and Applicable Complex Analysis網(wǎng)絡公開度




書目名稱Progress in Approximation Theory and Applicable Complex Analysis網(wǎng)絡公開度學科排名




書目名稱Progress in Approximation Theory and Applicable Complex Analysis被引頻次




書目名稱Progress in Approximation Theory and Applicable Complex Analysis被引頻次學科排名




書目名稱Progress in Approximation Theory and Applicable Complex Analysis年度引用




書目名稱Progress in Approximation Theory and Applicable Complex Analysis年度引用學科排名




書目名稱Progress in Approximation Theory and Applicable Complex Analysis讀者反饋




書目名稱Progress in Approximation Theory and Applicable Complex Analysis讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:33:21 | 只看該作者
第160251主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:37:00 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 07:40:30 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 10:07:02 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:17:05 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 18:30:15 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:22:22 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:51:48 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 08:58:09 | 只看該作者
10樓
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
汾阳市| 克东县| 唐河县| 蕉岭县| 岳普湖县| 霍山县| 扎鲁特旗| 喀喇| 庆云县| 丹东市| 醴陵市| 金平| 尚志市| 名山县| 荔波县| 乌兰浩特市| 大英县| 和政县| 广河县| 登封市| 内黄县| 红原县| 和平县| 翁牛特旗| 绿春县| 铜陵市| 常山县| 鸡泽县| 和硕县| 确山县| 云霄县| 榆社县| 嵩明县| 永和县| 淅川县| 宜城市| 平远县| 北碚区| 宁德市| 虞城县| 临湘市|