找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Proceedings of the International Conference on Fractional Differentiation and its Applications (ICFD; Andrzej Dzielinski,Dominik Sierociuk

[復制鏈接]
查看: 54097|回復: 35
樓主
發(fā)表于 2025-3-21 18:14:44 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Proceedings of the International Conference on Fractional Differentiation and its Applications (ICFDA’21)
編輯Andrzej Dzielinski,Dominik Sierociuk,Piotr Ostalcz
視頻videohttp://file.papertrans.cn/759/758660/758660.mp4
概述Presents recent results related to the analysis and practical implementation of the non-integer order calculus.Provides papers presented in the International Conference on Fractional Calculus and its
叢書名稱Lecture Notes in Networks and Systems
圖書封面Titlebook: Proceedings of the International Conference on Fractional Differentiation and its Applications (ICFD;  Andrzej Dzielinski,Dominik Sierociuk
描述.This book touches upon various aspects of a very interesting, and growing in popularity category of models of dynamical systems. These are the so-called fractional-order systems. Such models are not only relevant for many fields of science and technology, but may also find numerous applications in other disciplines applying the mathematical modelling tools. Thus, the book is intended for a very wide audience of professionals who want to expand their knowledge of systems modelling and its applications..The book includes the selections of papers presented at the International Conference on Fractional Calculus and its Applications organized by the Warsaw University of Technology and was held online on 6–8 September 2021..The International Conference on Fractional Calculus and its Applications (ICFDA) has an almost twenty years history. It started in Bordeaux (France) in 2004, followed by Porto (Portugal) 2006, Istanbul (Turkey) 2008, Badajoz (Spain) 2010, Nanjing (China) 2012, Catania (Italy) 2014, Novi Sad (Serbia) 2016, Amman (Jordan) 2018. Next ICFDA was planned in 2020 in Warsaw (Poland), but COVID-19 pandemic shifted it to 6–8 September 2021. Hence, the organizers were forced to
出版日期Conference proceedings 2022
關鍵詞Fractional Calculus; Riemann-Liouville Fractional Order (FO) Derivative; Caputo FO Derivative; Grünwald
版次1
doihttps://doi.org/10.1007/978-3-031-04383-3
isbn_softcover978-3-031-04382-6
isbn_ebook978-3-031-04383-3Series ISSN 2367-3370 Series E-ISSN 2367-3389
issn_series 2367-3370
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Proceedings of the International Conference on Fractional Differentiation and its Applications (ICFDA’21)影響因子(影響力)




書目名稱Proceedings of the International Conference on Fractional Differentiation and its Applications (ICFDA’21)影響因子(影響力)學科排名




書目名稱Proceedings of the International Conference on Fractional Differentiation and its Applications (ICFDA’21)網(wǎng)絡公開度




書目名稱Proceedings of the International Conference on Fractional Differentiation and its Applications (ICFDA’21)網(wǎng)絡公開度學科排名




書目名稱Proceedings of the International Conference on Fractional Differentiation and its Applications (ICFDA’21)被引頻次




書目名稱Proceedings of the International Conference on Fractional Differentiation and its Applications (ICFDA’21)被引頻次學科排名




書目名稱Proceedings of the International Conference on Fractional Differentiation and its Applications (ICFDA’21)年度引用




書目名稱Proceedings of the International Conference on Fractional Differentiation and its Applications (ICFDA’21)年度引用學科排名




書目名稱Proceedings of the International Conference on Fractional Differentiation and its Applications (ICFDA’21)讀者反饋




書目名稱Proceedings of the International Conference on Fractional Differentiation and its Applications (ICFDA’21)讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:02:59 | 只看該作者
第158660主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:10:29 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:18:45 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 11:53:20 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:36:02 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 19:50:20 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 21:23:29 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:30:17 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 08:52:36 | 只看該作者
10樓
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-1 18:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
都匀市| 荣成市| SHOW| 永兴县| 乡城县| 东乌珠穆沁旗| 平罗县| 高平市| 镇远县| 南涧| 密山市| 新郑市| 门头沟区| 蓝田县| 新宁县| 南岸区| 阿坝县| 孟津县| 金沙县| 城步| 龙南县| 筠连县| 吉安市| 鸡西市| 蛟河市| 弥渡县| 莱州市| 阿巴嘎旗| 宁阳县| 邵阳县| 柳州市| 临夏县| 通江县| 九龙城区| 高青县| 荆州市| 雅江县| 佛山市| 余庆县| 九龙县| 新和县|