找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Proceedings of ELM 2021; Theory, Algorithms a Kaj-Mikael Bj?rk Conference proceedings 2023 The Editor(s) (if applicable) and The Author(s),

[復(fù)制鏈接]
查看: 26491|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:08:26 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Proceedings of ELM 2021
副標(biāo)題Theory, Algorithms a
編輯Kaj-Mikael Bj?rk
視頻videohttp://file.papertrans.cn/758/757558/757558.mp4
概述Provides recent research on Extreme Learning Machines (ELM).Contains selected papers from the 11th International Conference on Extreme Learning Machines 2022.Presents theory, algorithms, and applicati
叢書(shū)名稱Proceedings in Adaptation, Learning and Optimization
圖書(shū)封面Titlebook: Proceedings of ELM 2021; Theory, Algorithms a Kaj-Mikael Bj?rk Conference proceedings 2023 The Editor(s) (if applicable) and The Author(s),
描述.This book contains papers from the International Conference on Extreme Learning Machine 2021, which was held in virtual on December 15–16, 2021. Extreme learning machines (ELM) aims to enable pervasive learning and pervasive intelligence. As advocated by ELM theories, it is exciting to see the convergence of machine learning and biological learning from the long-term point of view. ELM may be one of the fundamental `learning particles’ filling the gaps between machine learning and biological learning (of which activation functions are even unknown). ELM represents a suite of (machine and biological) learning techniques in which hidden neurons need not be tuned: inherited from their ancestors or randomly generated. ELM learning theories show that effective learning algorithms can be derived based on randomly generated hidden neurons (biological neurons, artificial neurons, wavelets, Fourier series, etc.) as long as they are nonlinear piecewise continuous, independent of training dataand application environments. Increasingly, evidence from neuroscience suggests that similar principles apply in biological learning systems. ELM theories and algorithms argue that “random hidden neuron
出版日期Conference proceedings 2023
關(guān)鍵詞Intelligent Systems; Extreme Learning Machine; ELM 2021; The International Conference on Extreme Learni
版次1
doihttps://doi.org/10.1007/978-3-031-21678-7
isbn_softcover978-3-031-21680-0
isbn_ebook978-3-031-21678-7Series ISSN 2363-6084 Series E-ISSN 2363-6092
issn_series 2363-6084
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Proceedings of ELM 2021影響因子(影響力)




書(shū)目名稱Proceedings of ELM 2021影響因子(影響力)學(xué)科排名




書(shū)目名稱Proceedings of ELM 2021網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Proceedings of ELM 2021網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Proceedings of ELM 2021被引頻次




書(shū)目名稱Proceedings of ELM 2021被引頻次學(xué)科排名




書(shū)目名稱Proceedings of ELM 2021年度引用




書(shū)目名稱Proceedings of ELM 2021年度引用學(xué)科排名




書(shū)目名稱Proceedings of ELM 2021讀者反饋




書(shū)目名稱Proceedings of ELM 2021讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:27:43 | 只看該作者
第157558主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:09:13 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 08:39:08 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 11:09:36 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:05:01 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:52:11 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:54:10 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:45:58 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 05:58:19 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 15:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
达孜县| 和田市| 大关县| 寿光市| 盐亭县| 岑巩县| 康马县| 策勒县| 轮台县| 禄劝| 温宿县| 应城市| 什邡市| 湖州市| 阜平县| 巨鹿县| 老河口市| 安乡县| 淳化县| 沾化县| 克什克腾旗| 富裕县| 恩平市| 肇源县| 盐亭县| 贡觉县| 德清县| 仁化县| 博乐市| 平遥县| 吉安市| 镇平县| 洛浦县| 宁陕县| 盐山县| 轮台县| 武定县| 海原县| 博客| 武城县| 舞阳县|