找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Proceedings of ELM 2018; Jiuwen Cao,Chi Man Vong,Amaury Lendasse Conference proceedings 2020 The Editor(s) (if applicable) and The Author(

[復(fù)制鏈接]
查看: 9806|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:09:10 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Proceedings of ELM 2018
編輯Jiuwen Cao,Chi Man Vong,Amaury Lendasse
視頻videohttp://file.papertrans.cn/758/757557/757557.mp4
概述Provides recent research on Extreme Learning Machines (ELM).Contains selected papers from the International Conference on Extreme Learning Machines 2018, which was held in Singapore, November 21–23, 2
叢書(shū)名稱(chēng)Proceedings in Adaptation, Learning and Optimization
圖書(shū)封面Titlebook: Proceedings of ELM 2018;  Jiuwen Cao,Chi Man Vong,Amaury Lendasse Conference proceedings 2020 The Editor(s) (if applicable) and The Author(
描述.This book contains some selected papers from the International Conference on Extreme Learning Machine 2018, which was held in Singapore, November 21–23, 2018. This conference provided a forum for academics, researchers and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the ELM technique and brain learning..Extreme Learning Machines (ELM) aims to enable pervasive learning and pervasive intelligence. As advocated by ELM theories, it is exciting to see the convergence of machine learning and biological learning from the long-term point of view. ELM may be one of the fundamental “l(fā)earning particles” filling the gaps between machine learning and biological learning (of which activation functions are even unknown). ELM represents a suite of (machine and biological) learning techniques in which hidden neurons need not be tuned: inherited from their ancestors or randomly generated. ELM learning theories show that effective learning algorithms can be derived based on randomly generated hidden neurons (biological neurons, artificial neurons, wavelets, Fourier series, etc.) as long as they are nonlinear piecewise continuous, independe
出版日期Conference proceedings 2020
關(guān)鍵詞Intelligent Systems; Extreme Learning Machines; ELM 2018; The International Conference on Extreme Learn
版次1
doihttps://doi.org/10.1007/978-3-030-23307-5
isbn_softcover978-3-030-23309-9
isbn_ebook978-3-030-23307-5Series ISSN 2363-6084 Series E-ISSN 2363-6092
issn_series 2363-6084
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱(chēng)Proceedings of ELM 2018影響因子(影響力)




書(shū)目名稱(chēng)Proceedings of ELM 2018影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Proceedings of ELM 2018網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Proceedings of ELM 2018網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Proceedings of ELM 2018被引頻次




書(shū)目名稱(chēng)Proceedings of ELM 2018被引頻次學(xué)科排名




書(shū)目名稱(chēng)Proceedings of ELM 2018年度引用




書(shū)目名稱(chēng)Proceedings of ELM 2018年度引用學(xué)科排名




書(shū)目名稱(chēng)Proceedings of ELM 2018讀者反饋




書(shū)目名稱(chēng)Proceedings of ELM 2018讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:15:15 | 只看該作者
第157557主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:55:07 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 07:00:06 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 11:44:15 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:30:42 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:17:33 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:02:38 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:41:02 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 09:37:04 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 17:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
紫金县| 四会市| 武山县| 蓬安县| 饶平县| 横山县| 万山特区| 铜川市| 桃园县| 永嘉县| 开平市| 昂仁县| 安义县| 察哈| 楚雄市| 邢台市| 陵水| 始兴县| 津南区| 金溪县| 山东| 那坡县| 时尚| 乌鲁木齐县| 肃宁县| 通江县| 乌什县| 二连浩特市| 无为县| 阜康市| 滦南县| 建平县| 淮安市| 霍邱县| 安陆市| 三穗县| 巴楚县| 卓尼县| 漯河市| 合江县| 周至县|