找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Probability in Banach Spaces, 9; J?rgen Hoffmann-J?rgensen,James Kuelbs,Michael B. Conference proceedings 1994 Springer Science+Business

[復(fù)制鏈接]
樓主: Coenzyme
11#
發(fā)表于 2025-3-23 12:10:20 | 只看該作者
Sharp Exponential Inequalities for the Martingales in the 2-Smooth Banach Spaces and Applications to “Scalarizing” Decouplingqualities in terms of the sums of conditional moments of the martingale differences, rather than in terms of the .. norm of such sums. The results are believed to be new even in the particular case of the Hilbert spaces.
12#
發(fā)表于 2025-3-23 17:36:52 | 只看該作者
13#
發(fā)表于 2025-3-23 21:01:40 | 只看該作者
14#
發(fā)表于 2025-3-24 01:16:47 | 只看該作者
https://doi.org/10.1007/978-1-4612-0253-0Ergodic theory; Estimator; Gaussian measure; Law of large numbers; Likelihood; Martingale; Median; Random v
15#
發(fā)表于 2025-3-24 04:36:00 | 只看該作者
16#
發(fā)表于 2025-3-24 07:23:25 | 只看該作者
17#
發(fā)表于 2025-3-24 14:00:16 | 只看該作者
18#
發(fā)表于 2025-3-24 17:33:33 | 只看該作者
On the Central Limit Theorem for Multiparameter Stochastic Processesple paths are right-continuous and have left-limits. These criteria have been applied by Bezandry and Fernique, Bloznelis and Paulauskas to prove the central limit theorem (CLT) in the Skorohod space .[0,1].
19#
發(fā)表于 2025-3-24 22:43:07 | 只看該作者
A Weighted Central Limit Theorem for a Function-Indexed Sum with Random Point Masses for a functional central limit theorem for weighted sums of the form . where . = (ξ..,j = ., …. = 1, 2, …) is a triangular array of row-independent random variables, and X., …, .. are sampled iid and independent of . from P.
20#
發(fā)表于 2025-3-25 00:50:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 14:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兴和县| 上蔡县| 贵阳市| 太保市| 江门市| 周口市| 灵丘县| 靖西县| 曲水县| 平利县| 南和县| 体育| 共和县| 民乐县| 名山县| 海南省| 凤阳县| 富蕴县| 马关县| 阳江市| 武穴市| 民权县| 肇东市| 合作市| 津市市| 互助| 碌曲县| 公安县| 民丰县| 垦利县| 青龙| 习水县| 孝昌县| 兴隆县| 麟游县| 延庆县| 札达县| 濉溪县| 长宁区| 彭州市| 石河子市|