找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Probabilistic and Biologically Inspired Feature Representations; Michael Felsberg Book 2018 Springer Nature Switzerland AG 2018

[復(fù)制鏈接]
查看: 44084|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:33:10 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Probabilistic and Biologically Inspired Feature Representations
編輯Michael Felsberg
視頻videohttp://file.papertrans.cn/757/756836/756836.mp4
叢書名稱Synthesis Lectures on Computer Vision
圖書封面Titlebook: Probabilistic and Biologically Inspired Feature Representations;  Michael Felsberg Book 2018 Springer Nature Switzerland AG 2018
描述Under the title ."Probabilistic and Biologically Inspired Feature Representations,". this text collects a substantial amount of work on the topic of channel representations. Channel representations are a biologically motivated, wavelet-like approach to visual feature descriptors: they are local and compact, they form a computational framework, and the represented information can be reconstructed. The first property is shared with many histogram- and signature-based descriptors, the latter property with the related concept of population codes. In their unique combination of properties, channel representations become a visual Swiss army knife—they can be used for image enhancement, visual object tracking, as 2D and 3D descriptors, and for pose estimation. In the chapters of this text, the framework of channel representations will be introduced and its attributes will be elaborated, as well as further insight into its probabilistic modeling and algorithmic implementation will be given. Channel representations are a useful toolbox to represent visual information for machine learning, as they establish a generic way to compute popular descriptors such as HOG, SIFT, and SHOT. Even in an
出版日期Book 2018
版次1
doihttps://doi.org/10.1007/978-3-031-01822-0
isbn_softcover978-3-031-00694-4
isbn_ebook978-3-031-01822-0Series ISSN 2153-1056 Series E-ISSN 2153-1064
issn_series 2153-1056
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

書目名稱Probabilistic and Biologically Inspired Feature Representations影響因子(影響力)




書目名稱Probabilistic and Biologically Inspired Feature Representations影響因子(影響力)學(xué)科排名




書目名稱Probabilistic and Biologically Inspired Feature Representations網(wǎng)絡(luò)公開度




書目名稱Probabilistic and Biologically Inspired Feature Representations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Probabilistic and Biologically Inspired Feature Representations被引頻次




書目名稱Probabilistic and Biologically Inspired Feature Representations被引頻次學(xué)科排名




書目名稱Probabilistic and Biologically Inspired Feature Representations年度引用




書目名稱Probabilistic and Biologically Inspired Feature Representations年度引用學(xué)科排名




書目名稱Probabilistic and Biologically Inspired Feature Representations讀者反饋




書目名稱Probabilistic and Biologically Inspired Feature Representations讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:03:16 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:24:55 | 只看該作者
地板
發(fā)表于 2025-3-22 06:13:25 | 只看該作者
2153-1056 topic of channel representations. Channel representations are a biologically motivated, wavelet-like approach to visual feature descriptors: they are local and compact, they form a computational framework, and the represented information can be reconstructed. The first property is shared with many h
5#
發(fā)表于 2025-3-22 10:29:09 | 只看該作者
978-3-031-00694-4Springer Nature Switzerland AG 2018
6#
發(fā)表于 2025-3-22 16:27:39 | 只看該作者
7#
發(fā)表于 2025-3-22 19:01:27 | 只看該作者
Channel Coding of Features, for channel coding, first in one (feature) dimension, then in several dimensions. These definitions will be used to define CCFMs and relate them to popular specific feature representations such as SIFT, HOG, and SHOT in Chapter 4.
8#
發(fā)表于 2025-3-22 23:11:58 | 只看該作者
9#
發(fā)表于 2025-3-23 04:42:46 | 只看該作者
CCFM Decoding and Visualization,for the extraction of robust estimates. For instance, the pose vector estimates described previously or the results from channel smoothing (see Figure 5.1) are obtained by the ., which is the central topic of this chapter.
10#
發(fā)表于 2025-3-23 07:02:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 16:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄢陵县| 柳州市| 新津县| 宁明县| 象山县| 中山市| 宜宾县| 兰西县| 武强县| 海盐县| 六枝特区| 乌拉特后旗| 东方市| 黄大仙区| 西充县| 江都市| 加查县| 阳西县| 右玉县| 马山县| 自贡市| 宁强县| 拜泉县| 平定县| 绥化市| 涟源市| 南华县| 旌德县| 凤冈县| 礼泉县| 甘德县| 玉龙| 永康市| 新郑市| 嵩明县| 马公市| 巴彦淖尔市| 美姑县| 师宗县| 保康县| 南乐县|