找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Probabilistic Risk Analysis and Bayesian Decision Theory; Marcel van Oijen,Mark Brewer Book 2022 The Author(s), under exclusive license to

[復(fù)制鏈接]
查看: 25379|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:31:07 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Probabilistic Risk Analysis and Bayesian Decision Theory
編輯Marcel van Oijen,Mark Brewer
視頻videohttp://file.papertrans.cn/757/756824/756824.mp4
概述Introduces a new theory of probabilistic risk analysis that is rigorous and versatile.Explains how risk analysis is related to Bayesian decision theory.Provides many examples, all with R-code
叢書名稱SpringerBriefs in Statistics
圖書封面Titlebook: Probabilistic Risk Analysis and Bayesian Decision Theory;  Marcel van Oijen,Mark Brewer Book 2022 The Author(s), under exclusive license to
描述The book shows how risk, defined as the statistical expectation of loss, can be formally decomposed as the product of two terms: hazard probability and system vulnerability. This requires a specific definition of vulnerability that replaces the many fuzzy definitions abounding in the literature.?The approach is expanded?to more complex risk analysis with three components rather than two, and with various definitions of hazard.?Equations are derived to quantify?the uncertainty of each risk component and show how the approach relates to Bayesian decision theory. Intended for statisticians, environmental scientists and risk analysts interested in the theory and application of risk analysis, this book provides precise definitions, new theory, and many examples with full computer code. The approach is based on straightforward use of probability theory which brings rigour and clarity. Only a moderate knowledge and understanding of probability theory is expected from the reader.
出版日期Book 2022
關(guān)鍵詞Bayesian Methods; Decision Theory; Hazards; Probability Theory; Risk Analysis; System Vulnerability; Uncer
版次1
doihttps://doi.org/10.1007/978-3-031-16333-3
isbn_softcover978-3-031-16332-6
isbn_ebook978-3-031-16333-3Series ISSN 2191-544X Series E-ISSN 2191-5458
issn_series 2191-544X
copyrightThe Author(s), under exclusive license to Springer Nature Switzerland AG 2022
The information of publication is updating

書目名稱Probabilistic Risk Analysis and Bayesian Decision Theory影響因子(影響力)




書目名稱Probabilistic Risk Analysis and Bayesian Decision Theory影響因子(影響力)學(xué)科排名




書目名稱Probabilistic Risk Analysis and Bayesian Decision Theory網(wǎng)絡(luò)公開度




書目名稱Probabilistic Risk Analysis and Bayesian Decision Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Probabilistic Risk Analysis and Bayesian Decision Theory被引頻次




書目名稱Probabilistic Risk Analysis and Bayesian Decision Theory被引頻次學(xué)科排名




書目名稱Probabilistic Risk Analysis and Bayesian Decision Theory年度引用




書目名稱Probabilistic Risk Analysis and Bayesian Decision Theory年度引用學(xué)科排名




書目名稱Probabilistic Risk Analysis and Bayesian Decision Theory讀者反饋




書目名稱Probabilistic Risk Analysis and Bayesian Decision Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:18:30 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:23:37 | 只看該作者
PRA vs. BDT in the Spatial Example,use irrigation in those locations where it increases the expectation for utility .[.], calculated from the 19 years of data. We aim to show that locations where irrigation increases .[.] are also the locations where it decreases the ... that we defined in Chap. ..
地板
發(fā)表于 2025-3-22 06:54:20 | 只看該作者
5#
發(fā)表于 2025-3-22 12:31:15 | 只看該作者
Sampling-Based Single-Threshold PRA,es .[.] are then replaced by normalised frequencies, but we shall denote those with .[.] too. Say the total number of (., .) observations is . of which .. have .-values that are below a threshold .. We then write, as before, .[.?
6#
發(fā)表于 2025-3-22 16:31:51 | 只看該作者
7#
發(fā)表于 2025-3-22 17:28:48 | 只看該作者
8#
發(fā)表于 2025-3-23 01:04:35 | 只看該作者
Sampling-Based Single-Threshold PRA: Uncertainty Quantification (UQ),Uncertainty in sampling-based expectations may be quantified as the standard deviations of the sample means, see Eq. (4.1).
9#
發(fā)表于 2025-3-23 02:25:44 | 只看該作者
Density Estimation to Move from Sampling- to Distribution-Based PRA,Our approach to sampling-based single-threshold PRA with UQ in Chap. . was to take a collection of . data pairs (., .), define a hazardous region ., and estimate .[.], .? and . as, respectively, .∕.., . and .. The approach was completed with UQ using Eqs. (.)–(.).
10#
發(fā)表于 2025-3-23 08:10:56 | 只看該作者
Bayesian Model-Based PRA,In practice, given a particular data set we will want to model the relationship between outcome/response variables and associated explanatory variables. We can then use this model to conduct our PRA. We will illustrate this using the existing linear (bivariate Gaussian) and nonlinear examples.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 20:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金门县| 建水县| 凤阳县| 保定市| 府谷县| 腾冲县| 筠连县| 伊川县| 海安县| 广元市| 鄂托克旗| 永昌县| 蒲城县| 永安市| 牟定县| 张掖市| 扶余县| 雷州市| 屏山县| 武鸣县| 三原县| 雷波县| 广宁县| 潢川县| 德阳市| 色达县| 景德镇市| 微山县| 梁平县| 巴东县| 綦江县| 双城市| 承德市| 巩留县| 巧家县| 冀州市| 武邑县| 莱阳市| 商南县| 抚松县| 手机|