找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Probabilistic Methods in Quantum Field Theory and Quantum Gravity; P. H. Damgaard,H. Hüffel,A. Rosenblum Book 1990 Springer Science+Busine

[復制鏈接]
樓主: 雜技演員
21#
發(fā)表于 2025-3-25 03:40:13 | 只看該作者
Geometric Continuum Regularization of Quantum Field Theorythe regularization is seen as entirely geometric: only the supermetric on field deformations is regularized, and the prescription provides universal non-perturbative invariant continuum regularization across all quantum field theory.
22#
發(fā)表于 2025-3-25 11:24:44 | 只看該作者
23#
發(fā)表于 2025-3-25 15:33:21 | 只看該作者
24#
發(fā)表于 2025-3-25 19:05:37 | 只看該作者
25#
發(fā)表于 2025-3-25 21:27:04 | 只看該作者
Simulation of Staggered Fermions by Polymer Algorithmseory is only possible if the fermion determinant is positive. Examples where the fermion determinant is complex are, for instance: QCD with non-zero chemical potential or simple scalar-fermion models with chiral Yukawa-couplings etc. Under these circumtances the search for alternative, possibly local, fermion algorithms is well motivated.
26#
發(fā)表于 2025-3-26 02:42:27 | 只看該作者
27#
發(fā)表于 2025-3-26 06:27:59 | 只看該作者
Some stochastic techniques in quantization, new developments in Markov fields and quantum fields been involved. We stress particularly developments involving techniques of stochastic analysis and where mathematical results have been obtained. By this we do not want at all to detract importance to more heuristic, physical approaches, on the contrary, we have been ourselves often inspired by suc
28#
發(fā)表于 2025-3-26 09:40:28 | 只看該作者
29#
發(fā)表于 2025-3-26 16:32:14 | 只看該作者
30#
發(fā)表于 2025-3-26 18:40:03 | 只看該作者
Quantization = Geometry + Probabilitythe classical phase space. It is shown that the integral of a phase factor involving the classical action over a pinned Wiener measure leads, in the limit of diverging diffusion constant, to an intrinsic, coordinate-free characterization of the quantization process for various kinematical operator c
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
瑞金市| 拉萨市| 乌鲁木齐市| 中西区| 炉霍县| 札达县| 邵阳县| 耿马| 普兰店市| 保亭| 新余市| 桑植县| 咸丰县| 南充市| 正宁县| 和政县| 手游| 本溪市| 临海市| 百色市| 汉川市| 中牟县| 苏州市| 长治县| 新竹市| 弥渡县| 民勤县| 祁东县| 灌云县| 华阴市| 将乐县| 大宁县| 凉山| 弋阳县| 安国市| 徐闻县| 平湖市| 射洪县| 乌拉特后旗| 武乡县| 吉首市|