找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Probabilistic Methods in Quantum Field Theory and Quantum Gravity; P. H. Damgaard,H. Hüffel,A. Rosenblum Book 1990 Springer Science+Busine

[復(fù)制鏈接]
樓主: 雜技演員
21#
發(fā)表于 2025-3-25 03:40:13 | 只看該作者
Geometric Continuum Regularization of Quantum Field Theorythe regularization is seen as entirely geometric: only the supermetric on field deformations is regularized, and the prescription provides universal non-perturbative invariant continuum regularization across all quantum field theory.
22#
發(fā)表于 2025-3-25 11:24:44 | 只看該作者
23#
發(fā)表于 2025-3-25 15:33:21 | 只看該作者
24#
發(fā)表于 2025-3-25 19:05:37 | 只看該作者
25#
發(fā)表于 2025-3-25 21:27:04 | 只看該作者
Simulation of Staggered Fermions by Polymer Algorithmseory is only possible if the fermion determinant is positive. Examples where the fermion determinant is complex are, for instance: QCD with non-zero chemical potential or simple scalar-fermion models with chiral Yukawa-couplings etc. Under these circumtances the search for alternative, possibly local, fermion algorithms is well motivated.
26#
發(fā)表于 2025-3-26 02:42:27 | 只看該作者
27#
發(fā)表于 2025-3-26 06:27:59 | 只看該作者
Some stochastic techniques in quantization, new developments in Markov fields and quantum fields been involved. We stress particularly developments involving techniques of stochastic analysis and where mathematical results have been obtained. By this we do not want at all to detract importance to more heuristic, physical approaches, on the contrary, we have been ourselves often inspired by suc
28#
發(fā)表于 2025-3-26 09:40:28 | 只看該作者
29#
發(fā)表于 2025-3-26 16:32:14 | 只看該作者
30#
發(fā)表于 2025-3-26 18:40:03 | 只看該作者
Quantization = Geometry + Probabilitythe classical phase space. It is shown that the integral of a phase factor involving the classical action over a pinned Wiener measure leads, in the limit of diverging diffusion constant, to an intrinsic, coordinate-free characterization of the quantization process for various kinematical operator c
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 13:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灵川县| 泾源县| 葫芦岛市| 海晏县| 同仁县| 浪卡子县| 宜兰县| 鹤庆县| 平邑县| 南昌市| 林周县| 松江区| 盐边县| 普宁市| 饶平县| 定结县| 富蕴县| 道真| 西宁市| 利川市| 交城县| 阿鲁科尔沁旗| 无锡市| 绥阳县| 汶川县| 瑞丽市| 龙里县| 遂昌县| 武强县| 福鼎市| 民乐县| 鹤壁市| 慈利县| 横山县| 景宁| 蓬莱市| 呼玛县| 镇安县| 长子县| 开封县| 永平县|