找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Probabilistic Approaches to Recommendations; Nicola Barbieri,Giuseppe Manco,Ettore Ritacco Book 2014 Springer Nature Switzerland AG 2014

[復(fù)制鏈接]
查看: 51669|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:28:27 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Probabilistic Approaches to Recommendations
編輯Nicola Barbieri,Giuseppe Manco,Ettore Ritacco
視頻videohttp://file.papertrans.cn/757/756785/756785.mp4
叢書名稱Synthesis Lectures on Data Mining and Knowledge Discovery
圖書封面Titlebook: Probabilistic Approaches to Recommendations;  Nicola Barbieri,Giuseppe Manco,Ettore Ritacco Book 2014 Springer Nature Switzerland AG 2014
描述The importance of accurate recommender systems has been widely recognized by academia and industry, and recommendation is rapidly becoming one of the most successful applications of data mining and machine learning. Understanding and predicting the choices and preferences of users is a challenging task: real-world scenarios involve users behaving in complex situations, where prior beliefs, specific tendencies, and reciprocal influences jointly contribute to determining the preferences of users toward huge amounts of information, services, and products. Probabilistic modeling represents a robust formal mathematical framework to model these assumptions and study their effects in the recommendation process. This book starts with a brief summary of the recommendation problem and its challenges and a review of some widely used techniques Next, we introduce and discuss probabilistic approaches for modeling preference data. We focus our attention on methods based on latent factors, such as mixture models, probabilistic matrix factorization, and topic models, for explicit and implicit preference data. These methods represent a significant advance in the research and technology of recommend
出版日期Book 2014
版次1
doihttps://doi.org/10.1007/978-3-031-01906-7
isbn_softcover978-3-031-00778-1
isbn_ebook978-3-031-01906-7Series ISSN 2151-0067 Series E-ISSN 2151-0075
issn_series 2151-0067
copyrightSpringer Nature Switzerland AG 2014
The information of publication is updating

書目名稱Probabilistic Approaches to Recommendations影響因子(影響力)




書目名稱Probabilistic Approaches to Recommendations影響因子(影響力)學(xué)科排名




書目名稱Probabilistic Approaches to Recommendations網(wǎng)絡(luò)公開度




書目名稱Probabilistic Approaches to Recommendations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Probabilistic Approaches to Recommendations被引頻次




書目名稱Probabilistic Approaches to Recommendations被引頻次學(xué)科排名




書目名稱Probabilistic Approaches to Recommendations年度引用




書目名稱Probabilistic Approaches to Recommendations年度引用學(xué)科排名




書目名稱Probabilistic Approaches to Recommendations讀者反饋




書目名稱Probabilistic Approaches to Recommendations讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:31:43 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:24:09 | 只看該作者
地板
發(fā)表于 2025-3-22 08:24:59 | 只看該作者
2151-0067 ne of the most successful applications of data mining and machine learning. Understanding and predicting the choices and preferences of users is a challenging task: real-world scenarios involve users behaving in complex situations, where prior beliefs, specific tendencies, and reciprocal influences
5#
發(fā)表于 2025-3-22 11:51:51 | 只看該作者
6#
發(fā)表于 2025-3-22 13:24:44 | 只看該作者
Bayesian Modeling,rate prior knowledge about the domain of .. Prior knowledge can be combined with observed data to determine the final optimal parameter set .. Rather than optimizing the likelihood, we concentrate on the probability .(.|.) and seek the set of parameters that maximizes it. By exploiting Bayes’ theorem, the likelihood can be expressed as
7#
發(fā)表于 2025-3-22 18:15:57 | 只看該作者
Conclusions,re is not the general superiority of probabilistic methods. It is well-known, e.g., from the Netflix prize, that the best approaches count an ensemble of methods that cooperate for a best prediction. Nevertheless, as also witnessed by the studies discussed in this book, probabilistic methods can play a prominent role within such ensembles.
8#
發(fā)表于 2025-3-22 21:35:58 | 只看該作者
9#
發(fā)表于 2025-3-23 02:01:11 | 只看該作者
10#
發(fā)表于 2025-3-23 08:59:20 | 只看該作者
Nicola Barbieri,Giuseppe Manco,Ettore Ritaccocreate it. It was seen that a firm’s strategic position should be different from its competitors’ and that competitive advantage stems from these differences. It has been shown that information systems should be designed to fit in with, and support business strategy, and that information system desi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 18:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
谢通门县| 平阳县| 酉阳| 杭州市| 东城区| 全南县| 荃湾区| 济阳县| 香港| 榆树市| 凯里市| 平塘县| 科技| 和顺县| 左云县| 台南市| 泌阳县| 商河县| 微博| 杂多县| 新兴县| 长泰县| 乐亭县| 贵阳市| 临澧县| 巴林右旗| 丰城市| 平安县| 德江县| 启东市| 思南县| 德格县| 杭锦后旗| 永康市| 广汉市| 巍山| 桐庐县| 通河县| 莱州市| 鲁山县| 保靖县|