找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Proactive Data Mining with Decision Trees; Haim Dahan,Shahar Cohen,Oded Maimon Book 2014 The Author(s) 2014 active learning.data mining.de

[復(fù)制鏈接]
查看: 16727|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:37:31 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Proactive Data Mining with Decision Trees
編輯Haim Dahan,Shahar Cohen,Oded Maimon
視頻videohttp://file.papertrans.cn/757/756772/756772.mp4
概述Includes supplementary material:
叢書名稱SpringerBriefs in Electrical and Computer Engineering
圖書封面Titlebook: Proactive Data Mining with Decision Trees;  Haim Dahan,Shahar Cohen,Oded Maimon Book 2014 The Author(s) 2014 active learning.data mining.de
描述This book explores a proactive and domain-driven method to classification tasks. This novel proactive approach to data mining not only induces a model for predicting or explaining a phenomenon, but also utilizes specific problem/domain knowledge to suggest specific actions to achieve optimal changes in the value of the target attribute. In particular, the authors suggest a specific implementation of the domain-driven proactive approach for classification trees. The book centers on the core idea of moving observations from one branch of the tree to another. It introduces a novel splitting criterion for decision trees, termed maximal-utility, which maximizes the potential for enhancing profitability in the output tree. Two real-world case studies, one of a leading wireless operator and the other of a major security company, are also included and demonstrate how applying the proactive approach to classification tasks can solve business problems. Proactive Data Mining with Decision Trees is intended for researchers, practitioners and advanced-level students.
出版日期Book 2014
關(guān)鍵詞active learning; data mining; decision trees; maximal-utility splitting criterion; optimization
版次1
doihttps://doi.org/10.1007/978-1-4939-0539-3
isbn_softcover978-1-4939-0538-6
isbn_ebook978-1-4939-0539-3Series ISSN 2191-8112 Series E-ISSN 2191-8120
issn_series 2191-8112
copyrightThe Author(s) 2014
The information of publication is updating

書目名稱Proactive Data Mining with Decision Trees影響因子(影響力)




書目名稱Proactive Data Mining with Decision Trees影響因子(影響力)學(xué)科排名




書目名稱Proactive Data Mining with Decision Trees網(wǎng)絡(luò)公開度




書目名稱Proactive Data Mining with Decision Trees網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Proactive Data Mining with Decision Trees被引頻次




書目名稱Proactive Data Mining with Decision Trees被引頻次學(xué)科排名




書目名稱Proactive Data Mining with Decision Trees年度引用




書目名稱Proactive Data Mining with Decision Trees年度引用學(xué)科排名




書目名稱Proactive Data Mining with Decision Trees讀者反饋




書目名稱Proactive Data Mining with Decision Trees讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:46:16 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:27:05 | 只看該作者
地板
發(fā)表于 2025-3-22 04:42:07 | 只看該作者
2191-8112 ach to data mining not only induces a model for predicting or explaining a phenomenon, but also utilizes specific problem/domain knowledge to suggest specific actions to achieve optimal changes in the value of the target attribute. In particular, the authors suggest a specific implementation of the
5#
發(fā)表于 2025-3-22 10:38:35 | 只看該作者
Proactive Data Mining: A General Approach and Algorithmic Framework,ive data mining. This approach is based on supervised learning, but focuses on actions and optimization, rather than on extracting accurate patterns. We present an algorithmic framework for tackling the new task. We begin this chapter by describing our notation.
6#
發(fā)表于 2025-3-22 13:09:26 | 只看該作者
Proactive Data Mining Using Decision Trees,ementing proactive data mining using: (a) a ready-made decision tree algorithm, and (b) a novel decision tree algorithm. We designed this latter algorithm to support the optimization phase of the proposed framework.
7#
發(fā)表于 2025-3-22 17:59:43 | 只看該作者
8#
發(fā)表于 2025-3-22 23:43:51 | 只看該作者
Book 2014 for predicting or explaining a phenomenon, but also utilizes specific problem/domain knowledge to suggest specific actions to achieve optimal changes in the value of the target attribute. In particular, the authors suggest a specific implementation of the domain-driven proactive approach for classi
9#
發(fā)表于 2025-3-23 03:25:59 | 只看該作者
10#
發(fā)表于 2025-3-23 09:17:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-5 11:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金坛市| 韩城市| 玉田县| 苗栗县| 中卫市| 怀远县| 辽中县| 翁源县| 东台市| 霍州市| 磴口县| 五华县| 清丰县| 老河口市| 冷水江市| 柳州市| 苍梧县| 斗六市| 长顺县| 沾化县| 沐川县| 汝阳县| 黄梅县| 滨州市| 潜江市| 固安县| 崇义县| 宁远县| 孟连| 盐城市| 元谋县| 启东市| 克山县| 屯昌县| 综艺| 五大连池市| 余庆县| 和平区| 阜新| 板桥市| 西乌珠穆沁旗|