找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Pro Spark Streaming; The Zen of Real-Time Zubair Nabi Book 2016 Zubair Nabi 2016 Spark.Spark Streaming.Spark Streaming Application.Spark St

[復制鏈接]
查看: 49619|回復: 35
樓主
發(fā)表于 2025-3-21 17:26:12 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Pro Spark Streaming
副標題The Zen of Real-Time
編輯Zubair Nabi
視頻videohttp://file.papertrans.cn/757/756654/756654.mp4
概述Highlights the differences between traditional stream processing and the Spark Streaming micro-batch model.Targets real-world applications from multiple industry verticals.Provides an introduction to
圖書封面Titlebook: Pro Spark Streaming; The Zen of Real-Time Zubair Nabi Book 2016 Zubair Nabi 2016 Spark.Spark Streaming.Spark Streaming Application.Spark St
描述.Learn the right cutting-edge skills and knowledge to leverage Spark Streaming to implement a wide array of real-time, streaming applications. This book?walks you through end-to-end real-time application development using real-world applications, data, and code. Taking an application-first approach, each chapter introduces use cases from a specific industry and uses publicly available datasets from that domain to unravel the intricacies of production-grade design and implementation. The domains covered in?.Pro Spark Streaming.?include social media, the sharing economy, finance, online advertising, telecommunication, and IoT. .In the last few years, Spark has become synonymous with big data processing. DStreams enhance the underlying Spark processing engine to support streaming analysis with a novel micro-batch processing model. .Pro Spark Streaming .by Zubair Nabi will enable you to become a specialist of latency sensitive applications by leveraging the key features of DStreams, micro-batch processing, and functional programming. To this end, the book includes ready-to-deploy examples and actual code. .Pro Spark Streaming.will act as the bible of Spark Streaming..What You‘ll Learn.
出版日期Book 2016
關(guān)鍵詞Spark; Spark Streaming; Spark Streaming Application; Spark Streaming SQL; Spark Streaming R; Streaming Ma
版次1
doihttps://doi.org/10.1007/978-1-4842-1479-4
isbn_softcover978-1-4842-1480-0
isbn_ebook978-1-4842-1479-4
copyrightZubair Nabi 2016
The information of publication is updating

書目名稱Pro Spark Streaming影響因子(影響力)




書目名稱Pro Spark Streaming影響因子(影響力)學科排名




書目名稱Pro Spark Streaming網(wǎng)絡公開度




書目名稱Pro Spark Streaming網(wǎng)絡公開度學科排名




書目名稱Pro Spark Streaming被引頻次




書目名稱Pro Spark Streaming被引頻次學科排名




書目名稱Pro Spark Streaming年度引用




書目名稱Pro Spark Streaming年度引用學科排名




書目名稱Pro Spark Streaming讀者反饋




書目名稱Pro Spark Streaming讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:48:59 | 只看該作者
Zubair NabiHighlights the differences between traditional stream processing and the Spark Streaming micro-batch model.Targets real-world applications from multiple industry verticals.Provides an introduction to
板凳
發(fā)表于 2025-3-22 02:21:47 | 只看該作者
地板
發(fā)表于 2025-3-22 05:08:44 | 只看該作者
DStreams: Real-Time RDDs,ng will define the future of real-time analytics. There is also a growing need to analyze both data at rest and data in motion to drive applications, which makes systems like Spark—which can do both—all the more attractive and powerful. It’s a system for all Big Data seasons.
5#
發(fā)表于 2025-3-22 12:19:05 | 只看該作者
6#
發(fā)表于 2025-3-22 16:11:01 | 只看該作者
Real-Time ETL and Analytics Magic,solution such as Hive, but this is a marriage of convenience rather than a natural fit: data must be copied back and forth, not to mention the burden of maintaining two different APIs. A better solution is Spark SQL.
7#
發(fā)表于 2025-3-22 19:15:10 | 只看該作者
Of Clouds, Lambdas, and Pythons,c), Databricks, and IBM (Bluemix). No book about Spark would be complete without a discussion of running it in the cloud. Other topics covered in this chapter include the Spark Python API, the lambda architecture, and graph processing.
8#
發(fā)表于 2025-3-22 22:14:29 | 只看該作者
9#
發(fā)表于 2025-3-23 04:24:10 | 只看該作者
10#
發(fā)表于 2025-3-23 07:51:09 | 只看該作者
Real-Time Route 66: Linking External Data Sources,cation—can substantially affect performance. With this in mind, this chapter is dedicated to ingesting data from solutions such as Kafka, Flume, and MQTT. In the process, you also write your own connector for HTTP to learn the ropes of connecting to external data sources.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 02:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
衡阳市| 三江| 布拖县| 平原县| 温宿县| 阳江市| 顺义区| 甘洛县| 泸水县| 从化市| 赣州市| 龙泉市| 平凉市| 开封县| 沛县| 博野县| 宁城县| 区。| 石家庄市| 开封县| 冷水江市| 巴东县| 三门峡市| 清丰县| 白玉县| 霍城县| 霍山县| 喀喇沁旗| 龙南县| 巴彦淖尔市| 张家口市| 仁布县| 石柱| 托克托县| 曲阜市| 澄江县| 达孜县| 大理市| 永川市| 平舆县| 滁州市|