找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Pro Deep Learning with TensorFlow 2.0; A Mathematical Appro Santanu Pattanayak Book 2023Latest edition Santanu Pattanayak 2023 Machine Lear

[復(fù)制鏈接]
查看: 22703|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:35:20 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Pro Deep Learning with TensorFlow 2.0
副標(biāo)題A Mathematical Appro
編輯Santanu Pattanayak
視頻videohttp://file.papertrans.cn/757/756380/756380.mp4
概述Teaches how to deploy deep learning applications using TensorFlow 2.0 in a relatively short period of time.Explains different deep learning methods for supervised and unsupervised machine learning.Cov
圖書(shū)封面Titlebook: Pro Deep Learning with TensorFlow 2.0; A Mathematical Appro Santanu Pattanayak Book 2023Latest edition Santanu Pattanayak 2023 Machine Lear
描述.This book builds upon the foundations established in its first edition, with updated chapters and the latest code implementations to bring it up to date with Tensorflow 2.0...Pro Deep Learning with TensorFlow 2.0. begins with the mathematical and core technical foundations of deep learning. Next, you will learn about convolutional neural networks, including new convolutional methods such as dilated convolution, depth-wise separable convolution, and their implementation. You’ll then gain an understanding of natural language processing in advanced network architectures such as transformers and various attention mechanisms relevant to natural language processing and neural networks in general. As you progress through the book, you’ll explore unsupervised learning frameworks that reflect the current state of deep learning methods, such as autoencoders and variational autoencoders. The final chapter covers the advanced topic of generative adversarial networks and their variants, such as cycle consistency GANs and graph neural network techniques such as graph attention networks and GraphSAGE...Upon completing this book, you will understand the mathematical foundations and concepts of de
出版日期Book 2023Latest edition
關(guān)鍵詞Machine Learning; Deep Learning; Python; TensorFlow; Convolutional Neural networks; Recurrent Neural Netw
版次2
doihttps://doi.org/10.1007/978-1-4842-8931-0
isbn_softcover978-1-4842-8930-3
isbn_ebook978-1-4842-8931-0
copyrightSantanu Pattanayak 2023
The information of publication is updating

書(shū)目名稱Pro Deep Learning with TensorFlow 2.0影響因子(影響力)




書(shū)目名稱Pro Deep Learning with TensorFlow 2.0影響因子(影響力)學(xué)科排名




書(shū)目名稱Pro Deep Learning with TensorFlow 2.0網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Pro Deep Learning with TensorFlow 2.0網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Pro Deep Learning with TensorFlow 2.0被引頻次




書(shū)目名稱Pro Deep Learning with TensorFlow 2.0被引頻次學(xué)科排名




書(shū)目名稱Pro Deep Learning with TensorFlow 2.0年度引用




書(shū)目名稱Pro Deep Learning with TensorFlow 2.0年度引用學(xué)科排名




書(shū)目名稱Pro Deep Learning with TensorFlow 2.0讀者反饋




書(shū)目名稱Pro Deep Learning with TensorFlow 2.0讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:52:58 | 只看該作者
第156380主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:04:19 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:01:12 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 10:06:22 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:45:22 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:10:56 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:45:30 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:42:33 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 08:42:53 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 04:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
赣榆县| 长兴县| 卢湾区| 盘山县| 西贡区| 满城县| 陵川县| 吉林省| 库尔勒市| 大厂| 荣昌县| 垦利县| 屏东县| 柘城县| 海晏县| 南城县| 名山县| 额尔古纳市| 县级市| 综艺| 漳州市| 米林县| 武安市| 盱眙县| 连平县| 什邡市| 凉山| 沿河| 淳化县| 满洲里市| 晋江市| 惠安县| 安阳市| 潍坊市| 鹤壁市| 嫩江县| 濉溪县| 嫩江县| 永嘉县| 浮山县| 张家川|