找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Privacy Preservation in IoT: Machine Learning Approaches; A Comprehensive Surv Youyang Qu,Longxiang Gao,Yong Xiang Book 2022 The Author(s),

[復制鏈接]
查看: 16076|回復: 35
樓主
發(fā)表于 2025-3-21 19:26:28 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Privacy Preservation in IoT: Machine Learning Approaches
副標題A Comprehensive Surv
編輯Youyang Qu,Longxiang Gao,Yong Xiang
視頻videohttp://file.papertrans.cn/756/755990/755990.mp4
概述Reviews recent developed privacy-preserving techniques in IoTs.Enriches the understanding of emerging machine learning enhanced privacy-preserving techniques in IoTs.Maximizes readers’ insights into h
叢書名稱SpringerBriefs in Computer Science
圖書封面Titlebook: Privacy Preservation in IoT: Machine Learning Approaches; A Comprehensive Surv Youyang Qu,Longxiang Gao,Yong Xiang Book 2022 The Author(s),
描述.This book aims to sort out the clear logic of the development of machine learning-driven privacy preservation in IoTs, including the advantages and disadvantages, as well as the future directions in this under-explored domain. In big data era, an increasingly massive volume of data is generated and transmitted in Internet of Things (IoTs), which poses great threats to privacy protection. Motivated by this, an emerging research topic, machine learning-driven privacy preservation, is fast booming to address various and diverse demands of IoTs. However, there is no existing literature discussion on this topic in a systematically manner..The issues of existing privacy protection methods (differential privacy, clustering, anonymity, etc.) for IoTs, such as low data utility, high communication overload, and unbalanced trade-off, are identified to the necessity of machine learning-driven privacy preservation. Besides, the leading and emerging attacks pose further threats to privacy protection in this scenario. To mitigate the negative impact, machine learning-driven privacy preservation methods for IoTs are discussed in detail on both the advantages and flaws, which is followed by potent
出版日期Book 2022
關鍵詞Internet of Things; Machine Learning; Privacy Protection; Data Sharing; Blockchain
版次1
doihttps://doi.org/10.1007/978-981-19-1797-4
isbn_softcover978-981-19-1796-7
isbn_ebook978-981-19-1797-4Series ISSN 2191-5768 Series E-ISSN 2191-5776
issn_series 2191-5768
copyrightThe Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
The information of publication is updating

書目名稱Privacy Preservation in IoT: Machine Learning Approaches影響因子(影響力)




書目名稱Privacy Preservation in IoT: Machine Learning Approaches影響因子(影響力)學科排名




書目名稱Privacy Preservation in IoT: Machine Learning Approaches網(wǎng)絡公開度




書目名稱Privacy Preservation in IoT: Machine Learning Approaches網(wǎng)絡公開度學科排名




書目名稱Privacy Preservation in IoT: Machine Learning Approaches被引頻次




書目名稱Privacy Preservation in IoT: Machine Learning Approaches被引頻次學科排名




書目名稱Privacy Preservation in IoT: Machine Learning Approaches年度引用




書目名稱Privacy Preservation in IoT: Machine Learning Approaches年度引用學科排名




書目名稱Privacy Preservation in IoT: Machine Learning Approaches讀者反饋




書目名稱Privacy Preservation in IoT: Machine Learning Approaches讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:27:17 | 只看該作者
第155990主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:29:16 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:24:10 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 10:42:59 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:58:31 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:42:26 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:07:03 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 03:31:46 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 08:15:44 | 只看該作者
10樓
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 05:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
上饶市| 宜丰县| 巢湖市| 芦山县| 河源市| 义乌市| 栖霞市| 河北区| 丽水市| 凯里市| 五常市| 蓬莱市| 邻水| 安阳县| 台北县| 城口县| 邵东县| 甘南县| 金寨县| 铅山县| 兴文县| 吴桥县| 古田县| 喜德县| 涞源县| 肇源县| 安新县| 施甸县| 泰和县| 高唐县| 金湖县| 临夏县| 武功县| 北海市| 登封市| 阜新| 永福县| 琼中| 镇安县| 京山县| 库尔勒市|