找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Primality Testing in Polynomial Time; From Randomized Algo Martin Dietzfelbinger Textbook 2004 Springer-Verlag Berlin Heidelberg 2004 Numbe

[復(fù)制鏈接]
查看: 12648|回復(fù): 35
樓主
發(fā)表于 2025-3-21 20:06:33 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Primality Testing in Polynomial Time
副標題From Randomized Algo
編輯Martin Dietzfelbinger
視頻videohttp://file.papertrans.cn/756/755132/755132.mp4
概述Describes the new deterministic polynomial time primality test (Agrawal/Kayal/Saxena) with complete analysis in a consolidated way.Includes supplementary material:
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Primality Testing in Polynomial Time; From Randomized Algo Martin Dietzfelbinger Textbook 2004 Springer-Verlag Berlin Heidelberg 2004 Numbe
描述On August 6, 2002,a paper with the title “PRIMES is in P”, by M. Agrawal, N. Kayal, and N. Saxena, appeared on the website of the Indian Institute of Technology at Kanpur, India. In this paper it was shown that the “primality problem”hasa“deterministic algorithm” that runs in “polynomial time”. Finding out whether a given number n is a prime or not is a problem that was formulated in ancient times, and has caught the interest of mathema- ciansagainandagainfor centuries. Onlyinthe 20thcentury,with theadvent of cryptographic systems that actually used large prime numbers, did it turn out to be of practical importance to be able to distinguish prime numbers and composite numbers of signi?cant size. Readily, algorithms were provided that solved the problem very e?ciently and satisfactorily for all practical purposes, and provably enjoyed a time bound polynomial in the number of digits needed to write down the input number n. The only drawback of these algorithms is that they use “randomization” — that means the computer that carries out the algorithm performs random experiments, and there is a slight chance that the outcome might be wrong, or that the running time might not be polynomi
出版日期Textbook 2004
關(guān)鍵詞Number theory; Prime; algorithm; algorithmics; algorithms; computer; computer science; algorithm analysis a
版次1
doihttps://doi.org/10.1007/b12334
isbn_softcover978-3-540-40344-9
isbn_ebook978-3-540-25933-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2004
The information of publication is updating

書目名稱Primality Testing in Polynomial Time影響因子(影響力)




書目名稱Primality Testing in Polynomial Time影響因子(影響力)學科排名




書目名稱Primality Testing in Polynomial Time網(wǎng)絡(luò)公開度




書目名稱Primality Testing in Polynomial Time網(wǎng)絡(luò)公開度學科排名




書目名稱Primality Testing in Polynomial Time被引頻次




書目名稱Primality Testing in Polynomial Time被引頻次學科排名




書目名稱Primality Testing in Polynomial Time年度引用




書目名稱Primality Testing in Polynomial Time年度引用學科排名




書目名稱Primality Testing in Polynomial Time讀者反饋




書目名稱Primality Testing in Polynomial Time讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:16:54 | 只看該作者
第155132主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 04:02:40 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:16:42 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 10:29:48 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:26:35 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:50:39 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 21:31:42 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 03:08:30 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 09:03:02 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 02:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
清河县| 易门县| 昭通市| 灵寿县| 资溪县| 仁化县| 增城市| 车致| 木兰县| 乐昌市| 正镶白旗| 老河口市| 安岳县| 正定县| 克东县| 赞皇县| 黑龙江省| 上饶县| 乐安县| 巍山| 游戏| 大新县| 陆河县| 饶平县| 尚义县| 扶绥县| 肃南| 神农架林区| 桦川县| 保定市| 开平市| 永吉县| 古浪县| 岳阳县| 营口市| 沂南县| 正定县| 克东县| 英山县| 武川县| 利津县|