找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Predictability of Chaotic Dynamics; A Finite-time Lyapun Juan C. Vallejo,Miguel A. F. Sanjuan Book 20171st edition Springer International P

[復制鏈接]
查看: 43743|回復: 35
樓主
發(fā)表于 2025-3-21 17:01:49 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Predictability of Chaotic Dynamics
副標題A Finite-time Lyapun
編輯Juan C. Vallejo,Miguel A. F. Sanjuan
視頻videohttp://file.papertrans.cn/755/754521/754521.mp4
概述Authored by leading researchers in the field.Self-contained introduction and presentation.Includes a number of worked-out examples
叢書名稱Springer Series in Synergetics
圖書封面Titlebook: Predictability of Chaotic Dynamics; A Finite-time Lyapun Juan C. Vallejo,Miguel A. F. Sanjuan Book 20171st edition Springer International P
描述.This book is primarily concerned with the computational aspects of predictability of dynamical systems – in particular those where observation, modeling and computation are strongly interdependent. Unlike with physical systems under control in laboratories, for instance in celestial mechanics, one is confronted with the observation and modeling of systems without the possibility of altering the key parameters of the objects studied. Therefore, the numerical simulations offer an essential tool for analyzing these systems...With the widespread use of computer simulations to solve complex dynamical systems, the reliability of the numerical calculations is of ever-increasing interest and importance. This reliability is directly related to the regularity and instability properties of the modeled flow. In this interdisciplinary scenario, the underlying physics provide the simulated models, nonlinear dynamics provides their chaoticity and instability properties, and the computer sciences provide the actual numerical implementation. .This book introduces and explores precisely this link between the models and their predictability characterization based on concepts derived from the field o
出版日期Book 20171st edition
關鍵詞Finite Lyapunov exponents; Henon-Heiles system; Simulation of galactic dynamics; Forecasting in chaotic
版次1
doihttps://doi.org/10.1007/978-3-319-51893-0
isbn_softcover978-3-319-84771-9
isbn_ebook978-3-319-51893-0Series ISSN 0172-7389 Series E-ISSN 2198-333X
issn_series 0172-7389
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書目名稱Predictability of Chaotic Dynamics影響因子(影響力)




書目名稱Predictability of Chaotic Dynamics影響因子(影響力)學科排名




書目名稱Predictability of Chaotic Dynamics網絡公開度




書目名稱Predictability of Chaotic Dynamics網絡公開度學科排名




書目名稱Predictability of Chaotic Dynamics被引頻次




書目名稱Predictability of Chaotic Dynamics被引頻次學科排名




書目名稱Predictability of Chaotic Dynamics年度引用




書目名稱Predictability of Chaotic Dynamics年度引用學科排名




書目名稱Predictability of Chaotic Dynamics讀者反饋




書目名稱Predictability of Chaotic Dynamics讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:25:23 | 只看該作者
第154521主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:56:21 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 04:57:48 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 10:05:27 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:31:14 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 19:07:13 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:54:18 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 05:25:12 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 09:00:12 | 只看該作者
10樓
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-5 23:40
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
囊谦县| 利川市| 广灵县| 宜黄县| 稷山县| 定西市| 兴安县| 新绛县| 乐陵市| 阿拉善盟| 内江市| 汶上县| 昭通市| 建昌县| 新巴尔虎右旗| 天津市| 登封市| 介休市| 金山区| 澎湖县| 蓝田县| 罗田县| 德州市| 勃利县| 灯塔市| 克东县| 东光县| 米泉市| 任丘市| 景洪市| 万盛区| 大余县| 五台县| 大英县| 大同市| 茶陵县| 手游| 莒南县| 揭阳市| 卢龙县| 桃源县|