找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Potential Functions of Random Walks in ? with Infinite Variance; Estimates and Applic K?hei Uchiyama Book 2023 The Editor(s) (if applicable

[復(fù)制鏈接]
查看: 13623|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:26:34 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Potential Functions of Random Walks in ? with Infinite Variance
副標(biāo)題Estimates and Applic
編輯K?hei Uchiyama
視頻videohttp://file.papertrans.cn/753/752378/752378.mp4
概述Emphasises the significance of the potential function.Gives classical proofs of new and established results.Generalises old results to new settings
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Potential Functions of Random Walks in ? with Infinite Variance; Estimates and Applic K?hei Uchiyama Book 2023 The Editor(s) (if applicable
描述.This book studies the potential functions of one-dimensional recurrent random walks on the lattice of integers with step distribution of infinite variance. The central focus is on obtaining reasonably nice estimates of the potential function. These estimates are then applied to various situations, yielding precise asymptotic results on, among other things, hitting probabilities of finite sets, overshoot distributions, Green functions on long finite intervals and the half-line, and absorption probabilities of two-sided exit problems..The potential function of a random walk is a central object in fluctuation theory. ?If the variance of the step distribution is finite, the potential function has a simple asymptotic form, which enables the theory of recurrent random walks to be described in a unified way with rather explicit formulae. On the other hand, if the variance is infinite, the potential function behaves in a wide range of ways depending on the step distribution, which the asymptotic behaviour of many functionals of the random walk closely reflects..In the case when the step distribution is attracted to a strictly stable law, aspects of the random walk have been intensively st
出版日期Book 2023
關(guān)鍵詞Sums of independent & identically distributed random variables; Potential theory of random walk; Rando
版次1
doihttps://doi.org/10.1007/978-3-031-41020-8
isbn_softcover978-3-031-41019-2
isbn_ebook978-3-031-41020-8Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Potential Functions of Random Walks in ? with Infinite Variance影響因子(影響力)




書目名稱Potential Functions of Random Walks in ? with Infinite Variance影響因子(影響力)學(xué)科排名




書目名稱Potential Functions of Random Walks in ? with Infinite Variance網(wǎng)絡(luò)公開度




書目名稱Potential Functions of Random Walks in ? with Infinite Variance網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Potential Functions of Random Walks in ? with Infinite Variance被引頻次




書目名稱Potential Functions of Random Walks in ? with Infinite Variance被引頻次學(xué)科排名




書目名稱Potential Functions of Random Walks in ? with Infinite Variance年度引用




書目名稱Potential Functions of Random Walks in ? with Infinite Variance年度引用學(xué)科排名




書目名稱Potential Functions of Random Walks in ? with Infinite Variance讀者反饋




書目名稱Potential Functions of Random Walks in ? with Infinite Variance讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:16:50 | 只看該作者
第152378主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 04:25:31 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 07:32:39 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 11:55:09 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:43:08 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:30:54 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:54:09 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:49:05 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:10:03 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
咸丰县| 玉田县| 聂拉木县| 罗甸县| 阿尔山市| 崇信县| 灌云县| 江津市| 和林格尔县| 偏关县| 旺苍县| 浙江省| 乌鲁木齐市| 翼城县| 无为县| 新巴尔虎左旗| 焦作市| 桐庐县| 金山区| 达拉特旗| 龙南县| 乌拉特中旗| 探索| 株洲县| 灌云县| 汉阴县| 定安县| 牙克石市| 大方县| 镇赉县| 渝中区| 宜丰县| 宁蒗| 菏泽市| 怀宁县| 南皮县| 昌宁县| 嘉善县| 衡阳市| 沁阳市| 民县|