找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Positive Linear Maps of Operator Algebras; Erling St?rmer Book 2013 Springer-Verlag Berlin Heidelberg 2013 Choi matrices.Jordan Algebras.P

[復制鏈接]
查看: 41431|回復: 35
樓主
發(fā)表于 2025-3-21 18:51:21 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Positive Linear Maps of Operator Algebras
編輯Erling St?rmer
視頻videohttp://file.papertrans.cn/752/751842/751842.mp4
概述Written by one of the founders of the theory of positive linear maps.First and only book in the literature devoted entirely to positive maps.Contains the necessary background to study the operator alg
叢書名稱Springer Monographs in Mathematics
圖書封面Titlebook: Positive Linear Maps of Operator Algebras;  Erling St?rmer Book 2013 Springer-Verlag Berlin Heidelberg 2013 Choi matrices.Jordan Algebras.P
描述.This volume, setting out the theory of positive maps as it stands today, reflects the rapid growth in this area of mathematics since it was recognized in the 1990s that these applications of C*-algebras are crucial to the study of entanglement in quantum theory. The author, a leading authority on the subject, sets out numerous results previously unpublished in book form. In addition to outlining the properties and structures of positive linear maps of operator algebras into the bounded operators on a Hilbert space, he guides readers through proofs of the Stinespring theorem and its applications to inequalities for positive maps..?.The text examines the maps’ positivity properties, as well as their associated linear functionals together with their density operators. It features special sections on extremal positive maps and Choi matrices. In sum, this is a vital publication that covers a full spectrum of matters relating to positive linear maps, of which a large proportion is relevant and applicable to today’s quantum information theory. The latter sections of the book present the material in finite dimensions, while the text as a whole appeals to a wider and more general readershi
出版日期Book 2013
關(guān)鍵詞Choi matrices; Jordan Algebras; Positive maps; completely positive maps; mapping cones; matrix theory
版次1
doihttps://doi.org/10.1007/978-3-642-34369-8
isbn_softcover978-3-642-42913-2
isbn_ebook978-3-642-34369-8Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer-Verlag Berlin Heidelberg 2013
The information of publication is updating

書目名稱Positive Linear Maps of Operator Algebras影響因子(影響力)




書目名稱Positive Linear Maps of Operator Algebras影響因子(影響力)學科排名




書目名稱Positive Linear Maps of Operator Algebras網(wǎng)絡(luò)公開度




書目名稱Positive Linear Maps of Operator Algebras網(wǎng)絡(luò)公開度學科排名




書目名稱Positive Linear Maps of Operator Algebras被引頻次




書目名稱Positive Linear Maps of Operator Algebras被引頻次學科排名




書目名稱Positive Linear Maps of Operator Algebras年度引用




書目名稱Positive Linear Maps of Operator Algebras年度引用學科排名




書目名稱Positive Linear Maps of Operator Algebras讀者反饋




書目名稱Positive Linear Maps of Operator Algebras讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:06:52 | 只看該作者
第151842主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:04:04 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:56:47 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 08:47:56 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:12:27 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:08:39 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:28:47 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:51:58 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:14:05 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 10:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
贡觉县| 镇平县| 江阴市| 平山县| 嘉黎县| 双桥区| 长丰县| 东光县| 丹巴县| 广东省| 车致| 淮阳县| 沂源县| 云林县| 新郑市| 宽甸| 株洲市| 饶河县| 名山县| 喀喇沁旗| 天长市| 蒙山县| 古浪县| 高碑店市| 六盘水市| 通河县| 八宿县| 轮台县| 女性| 鹿泉市| 育儿| 房产| 凤山市| 惠水县| 韩城市| 凉山| 鄂托克前旗| 嘉兴市| 正阳县| 措美县| 定安县|