找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Polytopes, Rings, and K-Theory; Joseph Gubeladze,Winfried Bruns Book 2009 Springer-Verlag New York 2009 Grad.K-theory.Lattice.algebra.comm

[復(fù)制鏈接]
查看: 21331|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:32:32 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Polytopes, Rings, and K-Theory
編輯Joseph Gubeladze,Winfried Bruns
視頻videohttp://file.papertrans.cn/752/751428/751428.mp4
概述Examines interactions of polyhedral discrete geometry and algebra.Presents several central results in all three areas of the exposition-from discrete geometry, commutative algebra, and K-theory.Has co
叢書名稱Springer Monographs in Mathematics
圖書封面Titlebook: Polytopes, Rings, and K-Theory;  Joseph Gubeladze,Winfried Bruns Book 2009 Springer-Verlag New York 2009 Grad.K-theory.Lattice.algebra.comm
描述.This book treats the interaction between discrete convex geometry, commutative ring theory, algebraic K-theory, and algebraic geometry. The basic mathematical objects are lattice polytopes, rational cones, affine monoids, the algebras derived from them, and toric varieties. The book discusses several properties and invariants of these objects, such as efficient generation, unimodular triangulations and covers, basic theory of monoid rings, isomorphism problems and automorphism groups, homological properties and enumerative combinatorics. The last part is an extensive treatment of the K-theory of monoid rings, with extensions to toric varieties and their intersection theory...?...This monograph?has been written with a view towards graduate students and researchers who want to study the cross-connections of algebra and discrete convex geometry. While the text has been written from an algebraist‘s view point, also specialists in lattice polytopes and related objects will find an up-to-date discussion of affine monoids and their combinatorial structure. Though?the authors?do not explicitly formulate algorithms, the book takes a constructive approach wherever possible...Winfried Bruns
出版日期Book 2009
關(guān)鍵詞Grad; K-theory; Lattice; algebra; commutative algebra; discrete geometry
版次1
doihttps://doi.org/10.1007/b105283
isbn_softcover978-1-4419-2617-3
isbn_ebook978-0-387-76356-9Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer-Verlag New York 2009
The information of publication is updating

書目名稱Polytopes, Rings, and K-Theory影響因子(影響力)




書目名稱Polytopes, Rings, and K-Theory影響因子(影響力)學(xué)科排名




書目名稱Polytopes, Rings, and K-Theory網(wǎng)絡(luò)公開度




書目名稱Polytopes, Rings, and K-Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Polytopes, Rings, and K-Theory被引頻次




書目名稱Polytopes, Rings, and K-Theory被引頻次學(xué)科排名




書目名稱Polytopes, Rings, and K-Theory年度引用




書目名稱Polytopes, Rings, and K-Theory年度引用學(xué)科排名




書目名稱Polytopes, Rings, and K-Theory讀者反饋




書目名稱Polytopes, Rings, and K-Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:29:24 | 只看該作者
第151428主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:13:51 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 04:47:03 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 08:59:23 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:30:44 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 19:33:50 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:02:19 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 01:53:25 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 05:50:43 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 11:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南丰县| 铁岭市| 杭锦后旗| 林周县| 桐庐县| 龙泉市| 泰和县| 六枝特区| 宜君县| 新密市| 余姚市| 高雄市| 清徐县| 彩票| 垫江县| 固镇县| 乌什县| 崇左市| 兰西县| 景德镇市| 宁海县| 定州市| 山阴县| 吴江市| 辽宁省| 邵阳市| 临洮县| 琼海市| 五寨县| 永清县| 特克斯县| 孟州市| 岚皋县| 丰台区| 麻阳| 广西| 正安县| 将乐县| 中宁县| 定南县| 大港区|