找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Polynomial Identity Rings; Vesselin Drensky,Edward Formanek Book 2004 Springer Basel AG 2004 Combinatorics.Commutative Algebras.Finite Dim

[復(fù)制鏈接]
查看: 7603|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:17:29 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Polynomial Identity Rings
編輯Vesselin Drensky,Edward Formanek
視頻videohttp://file.papertrans.cn/752/751345/751345.mp4
概述The greater part of recent research in polynomial identity rings is about combinatorial questions, and the combinatorial part of the lecture notes gives an up-to-date account of recent research.On the
叢書(shū)名稱(chēng)Advanced Courses in Mathematics - CRM Barcelona
圖書(shū)封面Titlebook: Polynomial Identity Rings;  Vesselin Drensky,Edward Formanek Book 2004 Springer Basel AG 2004 Combinatorics.Commutative Algebras.Finite Dim
描述.A ring R satisfies a polynomial identity if there is a polynomial f in noncommuting variables which vanishes under substitutions from R. For example, commutative rings satisfy the polynomial f(x,y) = xy - yx and exterior algebras satisfy the polynomial f(x,y,z) = (xy - yx)z - z(xy - yx). "Satisfying a polynomial identity" is often regarded as a generalization of commutativity...These lecture notes treat polynomial identity rings from both the combinatorial and structural points of view. The former studies the ideal of polynomial identities satisfied by a ring R. The latter studies the properties of rings which satisfy a polynomial identity. ..The greater part of recent research in polynomial identity rings is about combinatorial questions, and the combinatorial part of the lecture notes gives an up-to-date account of recent research. On the other hand, the main structural results have been known for some time, and the emphasis there is on a presentation accessible to newcomers to the subject...The intended audience is graduate students in algebra, and researchers in algebra, combinatorics and invariant theory..
出版日期Book 2004
關(guān)鍵詞Combinatorics; Commutative Algebras; Finite Dimensional Algebras; Polynomial Identity Algebras; Polynomi
版次1
doihttps://doi.org/10.1007/978-3-0348-7934-7
isbn_softcover978-3-7643-7126-5
isbn_ebook978-3-0348-7934-7Series ISSN 2297-0304 Series E-ISSN 2297-0312
issn_series 2297-0304
copyrightSpringer Basel AG 2004
The information of publication is updating

書(shū)目名稱(chēng)Polynomial Identity Rings影響因子(影響力)




書(shū)目名稱(chēng)Polynomial Identity Rings影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Polynomial Identity Rings網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Polynomial Identity Rings網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Polynomial Identity Rings被引頻次




書(shū)目名稱(chēng)Polynomial Identity Rings被引頻次學(xué)科排名




書(shū)目名稱(chēng)Polynomial Identity Rings年度引用




書(shū)目名稱(chēng)Polynomial Identity Rings年度引用學(xué)科排名




書(shū)目名稱(chēng)Polynomial Identity Rings讀者反饋




書(shū)目名稱(chēng)Polynomial Identity Rings讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:08:52 | 只看該作者
第151345主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 04:26:41 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 08:38:21 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:10:04 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:07:40 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 18:17:25 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:49:41 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:30:14 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 09:03:15 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西宁市| 志丹县| 景宁| 娄烦县| 维西| 光山县| 楚雄市| 青海省| 喀喇沁旗| 长葛市| 广州市| 沙洋县| 北宁市| 桦南县| 东港市| 华坪县| 南充市| 浏阳市| 阿鲁科尔沁旗| 高雄市| 田东县| 宝山区| 禄丰县| 芜湖县| 青海省| 南靖县| 和硕县| 栾川县| 清苑县| 玉林市| 舒兰市| 新泰市| 合肥市| 渝北区| 宁河县| 佳木斯市| 星子县| 淳安县| 淮安市| 兴城市| 鱼台县|