找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Political Economy of Brazil; Recent Economic Perf Philip Arestis,Alfredo Saad-Filho Book 2007 Palgrave Macmillan, a division of Macmillan P

[復(fù)制鏈接]
樓主: Grievous
31#
發(fā)表于 2025-3-27 00:21:41 | 只看該作者
Fernando Cardim de Carvalho,Fernando Ferrari-Filhos discussion, with an emphasis on critiquing the various approaches and on hypothesis testing in a regression setting. We examine both single and multiple hypothesis testing situations; Sects. 4.2 and 4.3 consider the frequentist and Bayesian approaches, respectively. Section 4.4 describes the well-
32#
發(fā)表于 2025-3-27 03:16:02 | 只看該作者
33#
發(fā)表于 2025-3-27 08:52:30 | 只看該作者
Alvaro Angeriz,Philip Arestis,Tirthankar Chakravartyed linear models (GLMs) and, more briefly, nonlinear models. We first give an outline of this chapter. In Sect.9.2 we describe three motivating datasets to which we return throughout the chapter. The GLMs discussed in Sect.6.3 can be extended to incorporate dependences in observations on the same un
34#
發(fā)表于 2025-3-27 13:13:13 | 只看該作者
Philip Arestis,Luiz Fernando de Paula,Fernando Ferrari-Filhos discussion, with an emphasis on critiquing the various approaches and on hypothesis testing in a regression setting. We examine both single and multiple hypothesis testing situations; Sects. 4.2 and 4.3 consider the frequentist and Bayesian approaches, respectively. Section 4.4 describes the well-
35#
發(fā)表于 2025-3-27 14:36:42 | 只看該作者
36#
發(fā)表于 2025-3-27 18:07:20 | 只看該作者
Lecio Morais,Alfredo Saad-Filhoed linear models (GLMs) and, more briefly, nonlinear models. We first give an outline of this chapter. In Sect.9.2 we describe three motivating datasets to which we return throughout the chapter. The GLMs discussed in Sect.6.3 can be extended to incorporate dependences in observations on the same un
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 21:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上饶市| 清水县| 灵宝市| 岳普湖县| 平陆县| 松溪县| 澄迈县| 辉南县| 鄂温| 桐城市| 加查县| 柘荣县| 富宁县| 曲麻莱县| 济南市| 延安市| 山东省| 平阳县| 苍梧县| 雷州市| 兴宁市| 获嘉县| 盐边县| 会昌县| 广德县| 廊坊市| 平利县| 十堰市| 新安县| 文安县| 泸溪县| 淮北市| 哈巴河县| 古蔺县| 密山市| 壶关县| 满城县| 怀安县| 景泰县| 大丰市| 琼结县|