找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Liouville-Riemann-Roch Theorems on Abelian Coverings; Minh Kha,Peter Kuchment Book 2021 The Editor(s) (if applicable) and The Author(s), u

[復制鏈接]
樓主: Opulent
11#
發(fā)表于 2025-3-23 12:35:50 | 只看該作者
12#
發(fā)表于 2025-3-23 16:18:14 | 只看該作者
Minh Kha,Peter KuchmentThe first unified exposition of Liouville and Riemann–Roch type theorems for elliptic operators on abelian coverings.Gives a well-organized and self-contained exposition of the topic, including new re
13#
發(fā)表于 2025-3-23 21:28:13 | 只看該作者
Lecture Notes in Mathematicshttp://image.papertrans.cn/l/image/586827.jpg
14#
發(fā)表于 2025-3-24 02:03:42 | 只看該作者
The Main Results,, the Riemann-Roch type equalities cannot be achieved (counterexamples are shown), while inequalities still hold. These inequalities, however, can be applied, the same way the equalities are, for proving the existence of solutions of elliptic equations with prescribed zeros, poles, and growth at infinity.
15#
發(fā)表于 2025-3-24 05:00:05 | 只看該作者
16#
發(fā)表于 2025-3-24 10:00:51 | 只看該作者
Specific Examples of Liouville-Riemann-Roch Theorems,In this chapter, we look at some examples of applications of the results of Chap. .. These include in particular self-adjoint operators with non-degenerate spectral band edges, operators with Dirac points in dispersion relation, as well as some non-self-adjoint cases.
17#
發(fā)表于 2025-3-24 12:46:30 | 只看該作者
Auxiliary Statements and Proofs of Technical Lemmas,Here we collect a variety of technical auxiliary considerations and results used in, or related to the content of the main chapters of the book.
18#
發(fā)表于 2025-3-24 15:56:45 | 只看該作者
19#
發(fā)表于 2025-3-24 20:20:35 | 只看該作者
20#
發(fā)表于 2025-3-25 01:29:16 | 只看該作者
Gabriel Amaral,Mārcis Pinnis,Inguna Skadi?a,Odinaldo Rodrigues,Elena Simperlry material: .For the first time in limnofaunistic bibliography, the present taxonomic knowledge about the different clades of chelicerata having adapted to an aquatic or amphibious lifestyle along various evolutionary pathways is brought together in an overview for the Central-European fauna. A tot
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 12:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
扶风县| 原平市| 鹤山市| 博白县| 贵德县| 阜新市| 榆中县| 浙江省| 开阳县| 佛冈县| 镇平县| 施甸县| 湖口县| 久治县| 扬中市| 图木舒克市| 青海省| 溧阳市| 西昌市| 霸州市| 新津县| 临沭县| 息烽县| 剑川县| 阿拉善盟| 淄博市| 佛教| 房山区| 阳曲县| 卓尼县| 连南| 孟津县| 四川省| 临高县| 黎平县| 白水县| 蓝田县| 龙陵县| 盈江县| 龙门县| 德昌县|