找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Pfaffian Systems, k-Symplectic Systems; Azzouz Awane,Michel Goze Book 2000 Springer Science+Business Media Dordrecht 2000 Grad.algebra.dif

[復(fù)制鏈接]
查看: 37311|回復(fù): 35
樓主
發(fā)表于 2025-3-21 20:03:35 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Pfaffian Systems, k-Symplectic Systems
編輯Azzouz Awane,Michel Goze
視頻videohttp://file.papertrans.cn/746/745378/745378.mp4
圖書封面Titlebook: Pfaffian Systems, k-Symplectic Systems;  Azzouz Awane,Michel Goze Book 2000 Springer Science+Business Media Dordrecht 2000 Grad.algebra.dif
描述The theory of foliations and contact forms have experienced such great de- velopment recently that it is natural they have implications in the field of mechanics. They form part of the framework of what Jean Dieudonne calls "Elie Cartan‘s great theory ofthe Pfaffian systems", and which even nowa- days is still far from being exhausted. The major reference work is. without any doubt that of Elie Cartan on Pfaffian systems with five variables. In it one discovers there the bases of an algebraic classification of these systems, their methods of reduction, and the highlighting ofthe first fundamental in- variants. This work opens to us, even today, a colossal field of investigation and the mystery of a ternary form containing the differential invariants of the systems with five variables always deligthts anyone who wishes to find out about them. One of the goals of this memorandum is to present this work of Cartan - which was treated even more analytically by Goursat in its lectures on Pfaffian systems - in order to expound the classifications currently known. The theory offoliations and contact forms appear in the study ofcompletely integrable Pfaffian systems of rank one. In each of
出版日期Book 2000
關(guān)鍵詞Grad; algebra; differential geometry; field; lie algebra; manifold
版次1
doihttps://doi.org/10.1007/978-94-015-9526-1
isbn_softcover978-90-481-5486-9
isbn_ebook978-94-015-9526-1
copyrightSpringer Science+Business Media Dordrecht 2000
The information of publication is updating

書目名稱Pfaffian Systems, k-Symplectic Systems影響因子(影響力)




書目名稱Pfaffian Systems, k-Symplectic Systems影響因子(影響力)學(xué)科排名




書目名稱Pfaffian Systems, k-Symplectic Systems網(wǎng)絡(luò)公開度




書目名稱Pfaffian Systems, k-Symplectic Systems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Pfaffian Systems, k-Symplectic Systems被引頻次




書目名稱Pfaffian Systems, k-Symplectic Systems被引頻次學(xué)科排名




書目名稱Pfaffian Systems, k-Symplectic Systems年度引用




書目名稱Pfaffian Systems, k-Symplectic Systems年度引用學(xué)科排名




書目名稱Pfaffian Systems, k-Symplectic Systems讀者反饋




書目名稱Pfaffian Systems, k-Symplectic Systems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:09:29 | 只看該作者
第145378主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 00:26:32 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:40:40 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 12:24:30 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:00:51 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:53:26 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 21:31:40 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 03:05:47 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:24:38 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 05:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台北县| 英德市| 翁牛特旗| 会同县| 察隅县| 连江县| 泽普县| 色达县| 赣榆县| 阜康市| 敦化市| 夏邑县| 威远县| 杂多县| 南涧| 南皮县| 安徽省| 弋阳县| 安庆市| 齐齐哈尔市| 巫山县| 唐海县| 金乡县| 同德县| 南皮县| 桦甸市| 修水县| 龙门县| 佛坪县| 河曲县| 松桃| 玛曲县| 延边| 西乌| 元江| 旺苍县| 随州市| 万安县| 彩票| 兴宁市| 合阳县|