找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Periods in Quantum Field Theory and Arithmetic; ICMAT, Madrid, Spain José Ignacio Burgos Gil,Kurusch Ebrahimi-Fard,Herb Conference proceedi

[復(fù)制鏈接]
查看: 54187|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:43:40 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Periods in Quantum Field Theory and Arithmetic
副標題ICMAT, Madrid, Spain
編輯José Ignacio Burgos Gil,Kurusch Ebrahimi-Fard,Herb
視頻videohttp://file.papertrans.cn/745/744089/744089.mp4
概述Contains articles from distinguished experts in both Theoretical Physics and Pure Mathematics.Offers a unique perspective on ideas and modern developments at the interface between quantum field theory
叢書名稱Springer Proceedings in Mathematics & Statistics
圖書封面Titlebook: Periods in Quantum Field Theory and Arithmetic; ICMAT, Madrid, Spain José Ignacio Burgos Gil,Kurusch Ebrahimi-Fard,Herb Conference proceedi
描述.This book is the outcome of research initiatives formed during the special ``Research Trimester on Multiple Zeta Values, Multiple Polylogarithms, and Quantum Field Theory‘‘ at the ICMAT (Instituto de Ciencias Matemáticas, Madrid) in 2014. The activity was aimed at understanding and deepening recent developments where Feynman and string amplitudes on the one hand, and periods and multiple zeta values on the other, have been at the heart of lively and fruitful interactions between theoretical physics and number theory over the past few decades.?.In this book, the reader will find research papers as well as survey articles, including open problems, on the interface between number theory, quantum field theory and string theory, written by leading experts in the respective fields. Topics include, among others, elliptic periods viewed from both a mathematical and a physical standpoint; further relations between periods and high energy physics, including cluster algebras and renormalisation theory; multiple Eisenstein series and q-analogues of multiple zeta values (also in connection with renormalisation); double shuffle and duality relations; alternative presentations of multiple zeta v
出版日期Conference proceedings 2020
關(guān)鍵詞11M32, 17B81, 20E08, 11G09; periods; multiple zeta values; Feynman amplitudes; polylogarithms; elliptic d
版次1
doihttps://doi.org/10.1007/978-3-030-37031-2
isbn_softcover978-3-030-37033-6
isbn_ebook978-3-030-37031-2Series ISSN 2194-1009 Series E-ISSN 2194-1017
issn_series 2194-1009
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Periods in Quantum Field Theory and Arithmetic影響因子(影響力)




書目名稱Periods in Quantum Field Theory and Arithmetic影響因子(影響力)學(xué)科排名




書目名稱Periods in Quantum Field Theory and Arithmetic網(wǎng)絡(luò)公開度




書目名稱Periods in Quantum Field Theory and Arithmetic網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Periods in Quantum Field Theory and Arithmetic被引頻次




書目名稱Periods in Quantum Field Theory and Arithmetic被引頻次學(xué)科排名




書目名稱Periods in Quantum Field Theory and Arithmetic年度引用




書目名稱Periods in Quantum Field Theory and Arithmetic年度引用學(xué)科排名




書目名稱Periods in Quantum Field Theory and Arithmetic讀者反饋




書目名稱Periods in Quantum Field Theory and Arithmetic讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:58:48 | 只看該作者
第144089主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:50:50 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 08:24:33 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 10:53:14 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:07:56 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 19:40:48 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:37:55 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 01:31:56 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:47:01 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 13:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
舟山市| 阿拉尔市| 临沭县| 浑源县| 吉水县| 汝城县| 庐江县| 乐平市| 洛川县| 颍上县| 西乌珠穆沁旗| 龙井市| 思茅市| 万荣县| 金华市| 万盛区| 建阳市| 分宜县| 崇明县| 大港区| 兴安县| 如皋市| 个旧市| 依安县| 麟游县| 南京市| 水城县| 五寨县| 乌拉特前旗| 三河市| 蒙山县| 祁连县| 休宁县| 孟津县| 县级市| 开平市| 德保县| 云霄县| 沭阳县| 湾仔区| 黄平县|